

MASTERôS THESIS

Thesis submitted in partial fulfilment of the requirements

for the degree of Master of Science in Engineering

at the University of Applied Sciences Technikum Wien

Game Engineering and Simulation

Deferred Rendering of Planetary Terrains with

Accurate Atmospheres
by

Stefan Sperlhofer, BSc

A-1200, Vienna, Höchstädtplatz 5

Supervisor 1: Dipl. ïIng. Stefan Reinalter

Supervisor 2: Dipl. ïIng. Dr. Gerd Hesina

Vienna, 31.08.2011

Declaration

ĂI confirm that this thesis is entirely my own work. All sources and quotations have been

fully acknowledged in the appropriate places with adequate footnotes and citations.

Quotations have been properly acknowledged and marked with appropriate punctuation.

The works consulted are listed in the bibliography. This paper has not been submitted to

another examination panel in the same or a similar form, and has not been published. ñ

Place, Date Signature

Kurzfassung

Für die realistische Darstellung der Erde unter verschiedensten Größenordnungen, ist eine

korrekte Visualisierung der atmosphärischen Streuung von äußerster Wichtigkeit. Aufgrund

der hohen Komplexität der entsprechenden physikalischen Gleichungen ist jedoch eine

Berechnung in Echtzeit nicht möglich. Aufgrund dessen werden üblicherweise vereinfachte

Modelle für die Berechnung herangezogen, welche üblicherweise geringere Genauigkeit

oder eingeschränkte Flexibilität bieten.

In dieser Arbeit wird gezeigt wie Planeten mit physikalisch korrekten Atmosphären mittels

Deferred Rendering visualisiert werden können. Dabei wird auf dem Modell von Bruneton

und Neyret aufgebaut, welches die entsprechenden Gleichungen in einem separaten

Vorberechnungsschritt löst. Diese vorberechneten Daten werden anschließend benutzt um

die Atmosphärische Streuung mittels eines Post-Effekts darzustellen. Die daraus

resultierenden Vorteile wären unter anderem eine vereinfachte Integration in bestehende

Systeme, geringere Komplexität, vorhersehbare Berechnungskosten sowie die Vermeidung

von Shader Permutationen. Die Darstellung des Planeten erfolgt auf Basis eines Würfels,

welcher in einzelne Blöcke eingeteilt wird. Um die Darstellung des Planeten in

unterschiedlichen Größenordnungen zu ermöglichen, wird ein Sichtbarkeits- sowie

Detailierungsalgorithmus angewandt. Zudem wird Normal Mapping, Multi-Texturing sowie

eine prozedurale Generierung der Oberfläche unterstützt.

Der erste Teil der Arbeit stellt die entsprechenden physikalischen Modelle vor und erklärt

verschiedenste Phänomene der Atmosphäre, wie beispielsweise die Änderung der

wahrgenommenen Farbe mit zunehmender Distanz, die Farbe des Himmels und den

Lichtring der Sonne. Im zweiten Teil wird die Darstellung des Planeten, der Sonne und der

Atmosphäre im Detail erklärt. Des Weiteren werden die Resultate des vorgestellten Models

unter verschiedensten Bedingungen demonstriert. Der letzte Teil behandelt schließlich

mögliche Einschränkungen sowie Verbesserungsvorschläge des präsentierten Verfahrens.

Schlagwörter: Atmosphärische Streuung, Planet, Deferred Rendering, 3D

Computergrafik

2

Abstract

Correct atmospheric scattering effects are crucial when visualizing the earth on varying

scales or time of the day. Due to the complexity of the corresponding light transfer equations,

current hardware is not able to compute these effects in real-time. Hence, interactive frame

rates are usually achieved by various simplifications over the physical model, which usually

results in less accuracy or flexibility.

This thesis presents a deferred approach to rendering physical correct atmospheres and

planetary terrains in real-time. The atmospheric model is based on the work of Bruneton and

Neyret and pre-computes the scattering equations in a separate offline pass. This pre-

computed data is then utilized, to apply atmospheric scattering as a single post-processing

effect. Using a post-process technique has several advantages over a traditional approach.

These are: simplified integration, reduced complexity, predictable rendering costs and

prevention of shader permutations. The planetary terrain is based on a tiled block algorithm

which utilizes a cube as its base geometry. To allow visualization on different scales, the

proposed model offers level of detail and frustum culling capabilities. In addition, the planets

are generated procedurally using noise functions and allow for multi texturing and normal

mapping.

The first part of this thesis introduces the reader to the physical model of atmospheric

scattering and explains various resulting phenomena such as the shifted colors of distant

objects, the color of the sky and the visible halo surrounding the sun. The second part

examines the proposed approach and provides detailed explanations on rendering the

terrain, the sun and the atmosphere. Furthermore, the results of this model are demonstrated

under various conditions. The last part of this thesis reveals the limitations of the presented

approach and proposes various improvements for future work.

Keywords: Atmospheric scattering, planet, deferred rendering, 3d computer graphics

3

Acknowledgements

I would like to show special gratitude to my supervisor, Stefan Reinalter, for sharing his

knowledge and experience. His effort and support throughout my thesis encouraged me to

improve this work continuously.

Thanks to my dear brother, Johannes, for proofreading my thesis.

It is also a pleasure to thank Eric Bruneton for clarifying certain parts of his work.

I would also like to thank John McLaughlin and the following people from GameDev.net for

their precious input on various topics: alvaro, jyk, MJP, SiCrane and __sprite.

You are awesome! Hopefully I can give something back to the community, by sharing this

thesis.

Special thanks also belong to my lovely girlfriend, who always believed in me. Without your

support over the past years, I would not stand where I am now.

Last but not least:

Thank you mum for not forcing me doing exhausting outdoor activities, when I was a kid.

Playing video games finally paid off.

Johannes, thank you for suggesting spending all of my pocket money on the Nintendo

Entertainment System, back then. Apparently, it was a safe investment!

4

Table of Contents

1 Introduction .. 7

2 Principles of Atmospheric Scattering .. 8

2.1 Introduction to the Physical Models .. 8

2.2 Rayleigh Scattering .. 8

2.3 Mie Scattering .. 10

2.4 Optical Depth.. 11

2.5 The Light Scattering Equations ... 11

2.5.1 Direct Sunlight .. 12

2.5.2 In-scattered Light .. 12

2.5.3 Reflected Light ... 13

2.6 Aerial Perspective .. 14

2.7 Sunlight and the Color of the Sky ... 15

2.8 Multiple Scattering .. 16

3 Previous Work .. 18

3.1 Atmospheric Scattering .. 18

3.2 Planetary Terrain Rendering ... 19

3.3 Deferred Rendering .. 19

4 Deferred Rendering of Planetary Terrains with Pre-computed Atmospheres 20

4.1 Motivation ... 20

4.2 Requirements ... 21

4.3 Geometry Buffer Layout ... 21

4.3.1 Linear Depth ... 22

4.3.2 Encoding of Surface Normals ... 25

4.4 Planetary Terrain Rendering ... 26

4.4.1 Basic Algorithm .. 26

4.4.2 Generating a Planetary Terrain .. 30

4.4.3 Rendering to the Geometry Buffer .. 42

4.4.4 Enabling Frustum Culling ... 43

4.5 Rendering of the Sun .. 49

4.5.1 Generating the Translation Matrix ... 49

5

4.5.2 Generating the Rotation Matrix ... 50

4.5.3 Expressing Direct Sunlight as Reflected Light .. 51

4.6 Pre-Computed Atmospheric Scattering... 52

4.6.1 Pre-Computation .. 52

4.6.2 Atmospheric Scattering as a Post-Processing Effect .. 70

4.6.3 High Dynamic Range Rendering .. 80

4.7 Results ... 83

4.7.1 Seamless Transition from Space to Planetary Surface ... 84

4.7.2 Comparing Single and Multiple Scattering .. 85

4.7.3 Rayleigh Scattering .. 86

4.7.4 Mie Scattering .. 86

4.7.5 Objects Occluding and Partially Intersecting the Atmosphere 89

5 Limitations and Future Work ... 90

5.1 Precision Issues ... 90

5.1.1 Analytic Transmittance ... 90

5.1.2 Artifacts at In-scattered Light .. 91

5.1.3 Artifacts at Mie Scattering ... 91

5.2 Reducing Memory Consumption... 92

5.2.1 Reducing Variable Parameters ... 92

5.2.2 Compression of Look-up Tables ... 92

5.2.3 Analytic transmittance .. 94

5.3 Shadows and Lightshafts ... 95

5.4 Level of Detail Artifacts ... 95

5.5 Lack of Artistic Control .. 95

6 Conclusion ... 96

Bibliography ... 97

Listings .. 101

List of Figures .. 103

List of Equations .. 106

List of Tables ... 107

List of Abbreviations .. 108

6

Appendix A ï Planetary Terrain Shader ... 109

Appendix B ï Sun Shader .. 113

Appendix C ï Atmospheric Scattering Shader ... 116

7

1 Introduction

Due to natural perception and our exposure to the physical world, we have a quite accurate

conception of how things behave in our everyday life. We are therefore very sensitive to

artificial approximations of the real world, even if the exact physical models are unfamiliar

to a large extend. Thus reproducing physical phenomena is a vastly researched topic in

computer graphics.

One of the main topics of physical approximation in computer graphics is the scattering of

light in participating media. Atmospheric scattering describes the scattering of light due to

the ingredients of the earths atmosphere (gases, water vapor, dust particles etc.).

The atmosphere of the earth is a layer of gases surrounding the earth. These gases are

retained due to the earthôs gravity. When light passes through this atmosphere, air

molecules and so called aerosols (particles like dust or pollution) interact with it and scatter

the light in different directions. This scattering is called atmospheric scattering. Simulation

of atmospheric scattering is essential for reproducing realistic outdoor scenery or the earth

viewed from space. One of the most obvious effects of atmospheric scattering is the blue

color of the sky and the red and yellow colored sun during sunrise and sunset. A more

subconscious effect is the blue tint of distant objects. This is the reason why for instance

mountains are perceived with slightly washed out colors. These effects shift with changing

composition within the atmosphere. So, for example, an increase of water vapor on a rainy

day has the effect that everything looks a little bit grayish and even more washed out.

This thesis is built on previous research in the field of atmospheric scattering and extends

these in various aspects. It makes use of pre-computed tables and therefore solves the

complex scattering equations in a separate offline pass to preserve interactive frame rates

during rendering. These pre-computed tables are then used to apply atmospheric

scattering to an arbitrary scene in a single post-processing effect by using deferred

rendering. Although the focus of this work lies upon atmospheric scattering, it is also

shown how spherical terrains are generated by using a tiled-block approach.

In the following chapter the physical models of atmospheric scattering are discussed in

further detail. Related work in the field of atmospheric scattering, terrain- and deferred

rendering is presented in chapter 3. Chapter 4 introduces the reader to the proposed

model and shows how atmospheric scattering can be applied to a spherical terrain as a

post-processing effect. Limitations and future work are then discussed in chapter 5.

8

2 Principles of Atmospheric Scatte ring

This chapter serves as an introduction to the physical models of atmospheric scattering

and introduces the reader to the most important light transfer equations.

2.1 Introduction to the Physical M odels

The sun radiates light of all wavelengths in nearly equal intensities. When the sunlight

penetrates the atmosphere it gets attenuated. This happens due to the various ingredients

of the atmosphere which scatter and absorb the sunlight. Scattering of light differs with

particle size and varies with wavelength.

Smaller air molecules scatter shorter wavelength light considerably stronger. Blue light has

the shortest wavelength, so it is scattered much stronger by these than longer wavelength

light. As blue light gets scattered and reflected all over the place, it reaches our eyes from

every direction. This is the reason why the sky is blue on a clear day. When the sun is near

the horizon at sunset or sunrise, the light travels a long distance through the atmosphere

and therefore most of the short wavelength light, like blue and green light, gets scattered

away, so it is perceived primarily with red colors.

Larger particles such as dust and pollution are called aerosols and basically scatter light of

all wavelengths equally. In addition, aerosols also absorb parts of the light. Aerosols are

the reason why the sky looks gray and washed out on a hazy day.

The proportion of light that is scattered away from its incident direction is a product of a

scattering coefficient ‍ί and a phase function ὖὬ. The angle — describes the angle

between the incoming light ray and the scattering direction. The phase function then

returns the amount of light that is scattered under the given angle —. Unlike air molecules

which basically scatter light in every direction equally, aerosols scatter light primarily in the

forward direction, which means they are scattered roughly in the same direction in which

they originally started. The phase function describes this angular dependency and

therefore differs for air molecules and aerosols.

Atmospheric scattering commonly used in computer graphics considers a clear sky model,

which is only based on two constituents, air molecules and aerosols, in a thin spherical

layer of decreasing density between the bottom ὙὫ and the top Ὑὸ of the atmosphere [1].

2.2 Rayleigh Scattering

Scattering of air molecules and particles, which are smaller than 10% of the lightôs

wavelength, is given by the Rayleigh theory [2], discovered and named after the Nobel

9

prize winner Lord Rayleigh. The scattering coefficient for Rayleigh scattering ‍Ὑ
ί can be

obtained as shown in Equation 2-1.

‍Ὑ
ί ‗ =

8“3 ὲ2 1 2

3ὔ‗4
 Equation 2-1

Constants of this equation are ὲ which describes the refractive index of air and ὔ which

stands for the molecular density at the bottom of the atmosphere ὙὫ. Rayleigh scattering is

inverse proportional to the 4th power of the wavelength ‗, which explains the strong

attenuation of short wavelength light.

The extinction coefficient ‍Ὡ determines how much light is scattered or absorbed. Air

molecules only reflect light and do not absorb it. Therefore the corresponding extinction

coefficient of air molecules equals the scattering coefficient: ‍Ὑ
Ὡ= ‍Ὑ

ί.

As it was briefly stated in chapter 2.1, air molecules scatter light in every direction in nearly

equal manner. Figure 2-1 shows the relative intensity of scattered light for the angles [0,“]

due to Rayleigh scattering.

Figure 2-1: Rayleigh scattering (‗= 0.45µm)

(left) plot for range [0,“] (right) polar plot for range [0,2“]

As shown in Figure 2-1 the relative intensity of the scattered light falls off slightly at angles

near
“

2
.

An approximation of the corresponding phase function (described in chapter 2.1) for

Rayleigh scattering ὖὬὙ is given by Equation 2-2.

ὖὬὙ‘ =
3

16“
1 + ‘2

where ‘= cos—
Equation 2-2

10

2.3 Mie Scattering

Mie scattering describes the scattering of aerosols, which are particles larger or equal to

10% of the lightôs wavelength, and is named after Gustav Mie [3]. According to Nishita et

al. [4] the scattering coefficient for Mie scattering ‍ὓ
ί equals the scattering coefficient for

Rayleigh scattering except the
1

‗4 dependence and is calculated as shown in Equation 2-3.

‍ὓ
ί=

8“3 ὲ2 1 2

3ὔ
 Equation 2-3

Aerosols also absorb parts of the incident light. The corresponding extinction coefficient of

aerosols is the sum of an absorption coefficient ‍ὓ
ὥ and the scattering coefficient:

‍ὓ
Ὡ= ‍ὓ

ὥ+ ‍ὓ
ί.

The strong forward scattering of aerosols is shown in Figure 2-2. As can be seen most of

the light is scattered in its original direction (scattering angles close to 0). Thus, the relative

intensity scattered will fall off drastically if the scattering angle differs slightly from the

incident direction.

Figure 2-2: Mie scattering

(left) plot for range [0,“] (right) polar plot for range [0,2“]

This angular dependency of Mie scattering can be approximated by the improved Henyey-

Greenstein phase function of Cornette and Shanks [5], which is given by Equation 2-4.

ὖὬὓ ‘ =
3

8“

1 Ὣ2 (1 + ‘2)

2 + Ὣ2 (1 + Ὣ2 2Ὣ‘)3 2ϳ
 Equation 2-4

where Ὣ affects the symmetry of scattering. Setting Ὣ to 0 basically approximates Rayleigh

scattering [6].

11

2.4 Optical Depth

The Optical Depth describes the optical thickness of a medium and is a measure of light

transparency over a given path. It is dependent on the atmospheric density, which

decreases toward the top boundary exponentially. The density ratio ” at position ὼ is given

by Equation 2-5.

”Ὑ(ὼ) = Ὡ
Ὤ(ὼ)

ὌὙ ”ὓ(ὼ) = Ὡ
Ὤ(ὼ)

Ὄὓ Equation 2-5

where Ὤ describes the distance of ὼ to ὙὫ and Ὄ denotes the scale height. The scale height

is used to vary the density ratio between ὙὫ and Ὑὸ and is different for air molecules and

aerosols.

The optical depth of a path Ὓ can be calculated by integrating the extinction coefficients

and the density ratio over this particular path as shown in Equation 2-6.

ὸ‗,Ὓ = ‍Ὥ
Ὡ(

Ὥ ‭ Ὑ,ὓ

Ὓ

‗)”Ὥ(ί)Ὠί
Equation 2-6

The optical depth can be used to obtain the transmittance of the medium and so the

extinction factor along a path as described in Equation 2-7.

ὊὩὼ(‗,Ὓ) = Ὡὸ(‗,Ὓ) Equation 2-7

In this context, the extinction factor can be understood as the fraction or percentage of an

incident light that remains after traversing the atmospheric medium over a given path.

Most of the following functions depend on the wavelength ‗. To enhance readability

denoting this dependency is omitted from now on.

2.5 The Light Scattering Equation s

The light scattering equations describe how much light arrives at a position due to

scattering within the atmosphere. This light can be expressed as a series of linear

operations. Therefore, the resulting light intensity arriving at position ὼ over the path ὼO ὼ0

is basically a sum of three components as shown in Equation 2-8: direct sunlight ὒ0, in-

scattered light ὒὭὲ[L] and reflected light ὒὶὩὪ[ὒ] [1].

12

ὒὼ,ὼ0,ὼί = ὒ0(ὼ,ὼί) + ὒὭὲ[ὒ](ὼ,ὼ0,ὼί) + ὒὶὩὪ[ὒ](ὼ,ὼ0,ὼί)
Equation 2-8

Where ὼί describes the position where the sunlight enters the atmosphere. Each of these

three components is described in further detail in the following chapters.

Note that in the following chapters light is also expressed using a more general term

ὒz(ὼ,ὺ,ί), which describes light that reaches a position ὼ from direction ὺ when the sun is

in direction ί [1] (ὒz can be either ὒ, ὒ0, ὒὭὲ or ὒὶὩὪ). The direction vectors ὺ and ί can be

described by two positions (ὼίὸὥὶὸ,ὼὩὲὨ). In this case the vector describes the normalized

vector resulting from ὼὩὲὨ ὼίὸὥὶὸ.

2.5.1 Direct Sunlight

Sunlight incident to the outer boundary of the atmosphere at point ὼί is attenuated while

traversing the atmospheric medium as shown in Figure 2-3. The remaining light reaching

point ὼ due to direct sunlight is obtained by attenuating the incident light intensity at ὼί over

the path ὼO ὼί as described by Equation 2-9.

ὒ0 ὼ,ὼί = ὊὩὼ ὼO ὼίὒὭὲὧὭὨὩὲὸ
Equation 2-9

where ὒὭὲὧὭὨὩὲὸ describes the incident sunlight at ὼί. Note that ὒ0 is 0 when the direction

ὼ,ὼί does not equal the direction to the sun or when the sun is occluded [1] (eg. by a

mountain).

Figure 2-3: Sunlight traverses the atmosphere between ὼί and ὼ

2.5.2 In-scattered Light

When light is scattered it is removed from the original ray, but as long as it isnôt absorbed, it

will get reflected and in-scattered into the path of a ray headed in a different direction [7].

13

This results in a so called self illumination of the participating medium [8]. The in-scattered

light is a result of the phase function ὖὬὙ and ὖὬὓ for air molecules and aerosols

respectively. Figure 2-4 shows the scattering at ώ towards ὼ.

Figure 2-4: Scattering of light at ώ towards ὼ is calculated by integrating over a sphere

The light scattered at a point ώ into direction ὺ is given by Equation 2-10 [1].

ὐ[ὒ] ώ,ὺ,ί= ‍Ὥ
ί

Ὥ ‭ Ὑ,ὓ

4“

0

”(ώ)ὖὬὭὺ.ύὒ(ώ,ύ,ί)Ὠύ Equation 2-10

The total intensity of in-scattered light along a path ranging from ὼO ὼ0 is obtained by

integrating over all scattering points along this particular path as shown in Equation 2-11

[1].

ὒὭὲ[ὒ] ὼ,ὼ0,ὼί = ὊὩὼ

ὼ0

ὼ

ὼO ώ ὐ[ὒ] ώ,ὺ(ὼ,ὼ0),ί(ώ,ὼί) Ὠώ Equation 2-11

Note that the light in-scattered at each point is attenuated before reaching position ὼ.

2.5.3 Reflected L ight

Usually, light incident to a surface is not absorbed. Instead it is reflected to a different

direction. The light incident to a certain point on a surface is commonly referred to as the

irradiance. The irradiance can be calculated by integrating over the hemisphere of surface

point ὼ0 as described by Equation 2-12 [1].

Ὅὒ ὼ0,ί= ὒὼ0,ύ,ίύ.ὲὼ0 Ὠύ

2“

0

Equation 2-12

where ὲ describes the surface normal at point ὼ0.

The remaining intensity of light reflected at ὼ0 and arriving at ὼ is obtained by attenuating

the reflected light along the path ὼO ὼ0 as described by Equation 2-13 [1].

14

ὒὶὩὪ[ὒ] ὼ,ὼ0,ὼί = ὊὩὼ ὼO ὼ0
‌ὼ0

“
Ὅ[ὒ](ὼ0,ίὼ0,ὼί) Equation 2-13

where ‌ describes a reflectance factor at ὼ0 (basically a value between 0 and 1). The term
1

“
 is a normalization factor, as the integration over the hemisphere yields “.

Figure 2-5 depicts the calculation of reflected light.

Figure 2-5: Irradiance at surface point ὼ0 is calculated by integrating over the hemisphere. Parts of

this light are reflected towards ὼ

2.6 Aerial Perspective

Depending on the time of the day and the composition of the atmosphere, objects far away

are perceived with slightly shifted colors. This is what is generally referred to as the aerial

perspective. According to Goldstein this effect is a fundamental requirement for humans to

estimate distances, especially for unfamiliar objects [9].

Although aerial perspective is not a special case of atmospheric scattering, it is mentioned

here for completeness. Special handling of aerial perspective in computer graphics papers

is usually the result of various simplifications made to the scattering equations and

therefore it is very common to devote an own chapter to it. Aerial perspective is just the

result of an extinction and an addition part. For its calculation, the in-scattered and

reflected light needs to be taken into account as described by Equation 2-14.

ὒὥὩὶὭὥὰ ὴὩὶίὴὩὧὸὭὺὩ(ὼ,ὺ,ί) = ὒὭὲ[ὒ] + ὒὶὩὪ[ὒ] (ὼ,ὺ,ί) Equation 2-14

The reflected light on a distant object is scattered on its way to the observer. On a clear

day the blue light is most affected. Therefore a large part of the blue color gets scattered

away before reaching the observer. Without in-scattering this would just remove light,

giving distant objects a strong shift towards yellow and brown tones as green and

15

especially red colors are hardly affected by the scattering of air molecules. But scattering

also adds colors. As mentioned before, blue light is scattered stronger and therefore has a

higher probability to get scattered into an arbitrary viewing ray. This is what gives distant

objects usually a blue hue. This shifting gets stronger with increased distances as more

light is in-scattered. This ultimately leads to a whitening of objects very far away. The effect

of aerial perspective is best seen on distant dark or shadowed objects. These objects are

perceived with a strong hue towards blue, as little light is reflected and the impact of in-

scattering is seen more clearly. In contrast to this, the effect of light scattering is less

apparent on white objects, as the addition and extinction of blue light counter each other

for the most part [10].

As stated above, this effect varies with composition of the atmosphere. At an atmospheric

condition with increased aerosols, scattering is less dependent on wavelength and

therefore green and red light gets scattered stronger. The result is that distant objects are

perceived with a general loss of contrast and the colors are basically shifted towards gray

[10].

2.7 Sunlight and the Color of the Sky

The colors of the sun and the sky are also the result of the scattering equations described

in chapter 2.5.

ὒίόὲ(ὼ,ὺ,ί) = ὒ0 + ὒὭὲ[ὒ] (ὼ,ὺ,ί)
Equation 2-15

The color of the sun perceived at position ὼ is described by Equation 2-15. It is a

combination of direct sunlight and in-scattered light.

As the sun radiates light of all wavelengths in nearly equal intensities, it is perceived as

almost pure white. However, when the sunlight penetrates the atmosphere it gets

attenuated due to scattering. Depending on the distance the light rays traverse within the

atmosphere, the perceived color of the sun changes. The visible halo around the sun is the

result of Mie-scattering, which scatters light more likely in its original direction and is

therefore more obvious towards the direction of the sun. This effect is stronger in

atmospheric conditions with increased aerosols (eg. hazy or rainy days).

The color of the sky is the result of in-scattered light as shown by Equation 2-16.

ὒίὯώ(ὼ,ὺ,ί) = ὒὭὲ[ὒ](ὼ,ὺ,ί)
Equation 2-16

16

Towards the horizon the sky is getting whiter (for the same reason why objects are getting

whiter with distance ï as described in the previous chapter). An increase of Aerosols shifts

the color of the sky towards gray.

When the sun approaches the horizon at sunset or sunrise, the sunlight traverses a long

path within the atmosphere and thus most of the blue light and some parts of the green

light are scattered away before reaching an observer. Therefore the colors of the sky and

the sun itself changes to yellow and red tones. In addition the slight fall off near
“

2
 of the

Rayleigh phase function (as mentioned in chapter 2.2) becomes more apparent, as the

darkest part of the sky can be found near the zenith, while the region near and opposing

the sun are the brightest.

2.8 Multiple Scattering

Considering just a single scattering event per light ray is generally referred to as single-

scattering. In reality, light rays are scattered multiple times and thus can change their

direction more than once. This effect is usually called multiple scattering.

Multiple scattering refers to a model, where multiple scattering events per light ray are

taken into account. Figure 2-6 shows three different light rays. Ray a) is only scattered

once and then stays on its direction towards ὼ. In a single-scattering model ray b) and c)

would not be considered, as they are scattered multiple times. Ray b) depicts multiple in-

scattered light and ray c) multiple reflected light.

Figure 2-6: a) single in-scattered light b) multiple in-scattered light c) multiple reflected light

Recall that the total light reaching a point within the atmosphere can be expressed as a

series of linear operations (as described in chapter 2.5). This means when taking multiple

scattering into account, the total light reaching a point ὼ is calculated as shown in Equation

2-17 [1].

17

ὒ(ὼ,ὺ,ί) = ὒ0 + ὒὭὲ+ ὒὶὩὪ ὒ0 + ὒὭὲ+ ὒὶὩὪ ὒὭὲ+ ὒὶὩὪ [ὒ0] + Ễ

= ὒ0 + ὒ1 + ὒ2 + ȣ= ὒ0 + ὒὭ

Equation 2-17

ὒὭ describes the light that is scattered or reflected exactly Ὥ times [1].

In simpler atmospheric models multiple scattering is completely ignored, as leaving it out is

less noticeable in midday scenarios, where the light beams are traversing short distances

through the atmosphere. Yet, the effects of multiple scattering become crucial when the

sun is near the horizon or in hazy conditions, as the light rays are much more affected by

the atmospheric media.

18

3 Previous Work

In this chapter relevant work devoted to atmospheric scattering as well as terrain and

deferred rendering is reviewed.

3.1 Atmospheric Scattering

Over the past few years, there has been a considerably large amount of work devoted to

reproducing atmospheric scattering.

Hoffman and Preetham propose an atmospheric scattering model which is capable of

producing real time frame rates without any pre-computation [7]. This is possible due to a

simplification of the optical depth, as the atmospheric density is assumed to be constant.

Basically, an extinction coefficient and the in-scattered light are calculated for every vertex

in the scene. These two values are then combined in the pixel shader. In this model the

observer is assumed to stay near the ground. Due to the assumption of constant

atmospheric density, the model is not capable of realistically handling cases with

substantial differences in terrain height and major changes of the observerôs altitude.

OôNeil also proposes a real time approach [6]. His model basically solves the scattering

equations by low sampling in the vertex shader. The phase function is then applied in the

pixel shader to avoid interpolation artifacts. The model produces correct scattering for

observers inside and outside of the atmosphere, but is only considering single scattering.

To achieve real time frame rates without any pre-computation, he is using a polynomial

scale function to calculate the optical depth. However, this scale function is only valid for a

fixed ratio between the radius of the earth, thickness of the atmospheric layer and scale

height.

Schafhitzel et al. propose an approach of rendering planets with atmospheres by using a

pre-computed table [11]. The proposed table stores the optical depth and is accessed by

three parameters: the sun and view angle and the observerôs altitude.

Bruneton et al. extends this approach with support for multiple scattering [1]. In addition,

they introduce a new parameter by storing the angle between the view and sun direction.

This allows for better parameterization, the reproduction of the earthôs shadow in the

atmosphere and the possibility to simulate lightshafts. This results in a four dimensional

table, which stores the in-scattered light. The optical depth and the surface irradiance are

stored in two separate tables.

19

3.2 Planetary Terrain Rendering

Visualizing a planetary terrain on many scales (e.g. on the planetary surface or in space -

thousands of kilometers away) requires dynamic Level of Detail (LOD) algorithms to

preserve details when near the ground. Most publications only deal with planar LOD terrain

rendering, which is sufficient for most applications. To render spherical terrains (like whole

planets) these algorithms have to be adapted accordingly.

A common approach is to form a cube of six planar terrains where each vertex is then

normalized to create a unit sphere. The vertices are then multiplied by the planets radius

and a corresponding height to form a planetary structure. OôNeil adapts this approach by

using the traditional ROAM algorithm [12] to render spherical terrains [13]. Hill however

shows that the ROAM algorithm is not reasonable for modern hardware and proposes a

tile-based approach with terrain chunks of fixed resolution to create a planetary terrain [14].

His model uses a quad-tree approach to replace one tile with four if a certain threshold is

exceeded. Cignoni et al. adapt their original BDAM algorithm [15] to spherical terrains [16].

The BDAM algorithm is capable of managing massive textured terrain data which is stored

in a binary tree in a separate pre-processing step.

A notable exception to these approaches is proposed by Clasen and Hege [17] whose

model does not rely on a cube as base geometry. Their implementation renders spherical

terrains based on the GPU-Based geometry clipmap algorithm [18], which basically makes

use of concentric rings rather than rectangles.

The planetary rendering proposed in this thesis is based on the work of Vistnes [19]. The

model reuses a small vertexbuffer to render large terrains and has therefore minimal

memory requirements. Although the model is intended for planar terrains only, it is shown

that it can be easily adapted for rendering spherical terrains.

3.3 Deferred Rendering

Deferred rendering is an approach to rendering where shading calculations for pixel

fragments are postponed until visibility is entirely determined. The idea of a deferred

renderer was first proposed by Deering et al. in 1988 [20]. Intermediate geometric

information is usually stored in a geometry buffer (GBuffer). This principle is based on the

work of Saito et al. [21].

Over the past few years, deferred Rendering has been getting increasingly popular. A

comprehensive overview of deferred rendering and a description of its advantages and

disadvantages are given by Hargreaves [22] .

20

4 Deferred Rendering of Planetary Terrains with

Pre-computed Atmospheres

This chapter proposes a planetary rendering model, which allows seamless transitions

from space to the ground. The creation of the planetary surface is based on the work of

Vistnes [19], which offers important features that allow for large scale terrain rendering like

LOD and frustum culling capabilities. The terrain is generated procedurally and offers

normal mapping and multi texturing to enhance realism when near the ground.

The rendered planet itself is surrounded by an atmosphere, similar to the earthôs

atmosphere, and accurately scatters the incident sunlight. The model is based on the work

proposed by Bruneton and Neyret [1] and takes multiple scattering into account. To

preserve interactive frame rates, the scattering equations are solved in a separate pre-

computation step. The results are then stored in tables that are accessed during rendering.

It is shown how atmospheric scattering can be applied in a single post-processing step that

works on arbitrary scenes. The model assumes a common GBuffer that stores depth,

color, normals and reflectance values.

At first the motivation for this approach is stated. After this, the requirements for this model

on the underlying hardware and software are discussed. Furthermore the GBuffer of the

proposed model is revealed along with basic considerations for storing and reconstructing

geometrical information. Chapter 4.4 presents the planetary terrain model and introduces

the reader to the implementation of key features like procedural generation of spherical

terrains, LOD and frustum culling functionality, normal mapping and multi texturing.

Chapter 4.5 shows how the sun is rendered. In chapter 4.6 the atmospheric scattering

model is closely examined. It is shown how the look-up tables can be pre-computed on the

GPU and how they can be used to apply accurate atmospheric scattering in real-time as a

post-processing effect. Chapter 4.7 finally presents the results of the proposed model.

Chapter 4.4 - 4.6 provides various code samples of the actual implementation. These are

written in the High Level Shading Language (HLSL) and in C++.

4.1 Motivation

Applying atmospheric scattering as a post-processing effect has several major advantages

over traditional forward rendering. These are:

¶ Simple and straightforward integration into existing projects

¶ Complex shader permutations are prevented

¶ Predictable rendering costs

21

As atmospheric scattering is considered a very complex rendering effect, integration into

an existing shader library can be cumbersome and time-consuming. In contrast, by

applying it as a post-processing effect, integration is simple in comparison and completely

detached from existing code. Another advantage is that the costs of applying this effect are

completely independent from the complexity of the scene and the number of objects

drawn. This makes the computation costs more predictable and does not add a constant

rendering overhead to every object contained in the scene. Additionally, no specific

GBuffer values are needed what makes this approach even more appealing and

comfortable.

4.2 Requirements

Due to vertex texture fetches, dynamic branching and the high instruction count, shader

model 3.0 is required at a minimum. In fact, shader model 4.0 is recommended as it

introduces a geometry shader stage which enables writing to 3D textures directly by the

GPU. Older shader models have to write every slice to a separate 2D texture and perform

the merge on the CPU. However, these 3D textures are created in a pre-computation step

and merging on the CPU would not affect the final performance during rendering.

The model also assumes support for multiple render targets (MRT). MRT refers to the

capability to render to multiple textures at once, while performing a single draw call.

Support for MRT heavily influences final performance due to the high computational

expenses of certain vertex shader, which otherwise would need to be executed multiple

times.

Memory consumption also needs to be considered as 3D textures quickly grow in size

when increasing the resolution. For instance, the look-up tables used in the example

implementation require slightly over 8 Mbytes. However memory consumption of the look-

up tables is highly dependent on the accuracy needed. Several ways how the table sizes

can be reduced are discussed in chapter 5.2.

The proposed implementation also makes use of the hardware depth buffer to store depth

information. This buffer is set as an input texture for successive render stages. If this is not

supported a separate floating point render target will be needed to store depth information.

4.3 Geometry Buffer Layout

As mentioned, the GBuffer used in the proposed model has a very common layout and

does not require special components.

22

Red 8 Bit Green 8 Bit Blue 8 Bit Alpha 8 Bit Description

ă Depth 24 Bit Ą Stencil Hardware Depth Stencil Buffer

Color red Color green Color blue Color alpha Color Buffer

Normal X Normal Y Normal Z Reflectance Normal & Reflectance Buffer

Figure 4-1: Layout of the GBuffer

As shown in Figure 4-1 the GBuffer is assumed to consist of two 32 bit render targets,

which store the color and normal values and a hardware depth stencil buffer, which stores

deph information.

The reflectance value is contained in the alpha channel of the normal buffer and is a

common part of most GBuffers. Basically this value represents ‌ of Equation 2-13.

However the proposed model stores the full term
‌(ὼ0)

“
 in the buffer.

4.3.1 Linear Depth

Perspective projection of a 3D scene onto a 2D image involves a linear part and a non-

linear part. The linear part is the multiplication of a vertex by the projection matrix, which

stores the original ᾀ component of the vertex in the ύ component. After this, the resulting

components of the vertex (ὼ,ώ and ᾀ) are divided by the ύ component (the original value of

ᾀ before multiplication by the projection matrix). This represents the non-linear part and

happens automatically between the vertex shader stage and the pixel shader stage. This

operation is often referred to as the homogeneous divide or the perspective divide and is a

non-linear function which enables the hardwareôs depth-buffering algorithm by mapping the

resulting ᾀ component to the range [0,1] (in the case of Direct3D).

Figure 4-2: View Frustum and its near and far plane

The linear and non-linear parts represent a function Ὣ(ᾀ) that maps a depth value between

the far plane Ὢ and the near plane ὲ (Figure 4-2) to the range [0,1] and is given as follows:

23

Ὣᾀ=
Ὢ

Ὢ ὲ

ὲὪ

Ὢ ὲᾀ
 Equation 4-1

Although the function described in Equation 4-1 is strictly increasing and order preserving,

the resulting graph is non-linear. Figure 4-3 shows the resulting non-linear depth values for

varying near planes.

Figure 4-3: Resulting non-linear depth for varying near planes

As shown, the majority of the resulting depth range is consumed by depth values close to

the near plane. This can lead to precision problems when the ratio between the near and

far plane increases.

It is very common in deferred rendering, to reconstruct the position of a pixel by making

use of its depth stored in the depth buffer. The accuracy of reconstruction is however

dependent on the precision of these depth values. In order to allow visualization of a planet

on many scales (at the ground or thousands of kilometers away), the ratio between the

near and far plane has to be set accordingly.

4.3.1.1 Storing Linear Depth

In order to solve the inevitable precision problems described in the previous chapter, depth

is stored linearly, which means that the accuracy of depth values is not dependent on its

distance to the near plane. Linear depth distribution can be obtained by multiplying the ᾀ

24

component of the vertex by the ύ component and the reciprocal of the far plane Ὢ before

the perspective divide. This finally results in a function Ὣᴂᾀ as follows:

Ὣᴂᾀ=
ᾀ ὲ

Ὢ ὲ
 Equation 4-2

Solving Equation 4-2 leads to a linear distribution of the resulting depth values and hence

to constant precision over the whole range.

4.3.1.2 Reconstructing the Original Position

The original position of a fragment in the depth buffer can be reconstructed easily when the

corresponding positions on the near and far plane are known. As the depth values are

distributed equally between the near and far plane, the position can be recreated by

solving Equation 4-3.

ὕὶὭὫὭὲὥὰὖέίὭὸὭέὲ= ὅὥάὩὶὥὖέίὭὸὭέὲ+ ὅὥάὩὶὥὝέὔὩὥὶ+

 ὈὩὴὸὬὠὥὰzὔὩὥὶὝέὊὥὶ

ὅὥάὩὶὥὝέὔὩὥὶ= ὔὩὥὶὖὰὥὲὩὖέίὭὸὭέὲ ὅὥάὩὶὥὖέίὭὸὭέὲ

ὔὩὥὶὝέὊὥὶ= ὊὥὶὖὰὥὲὩὖέίὭὸὭέὲ ὔὩὥὶὖὰὥὲὩὖέίὭὸὭέὲ

Equation 4-3

The position is obtained by offsetting the camera position by the distance to the near plane

and a linear interpolation between the near and far plane according to the depth value

stored in the depth buffer. Figure 4-4 shows an example of reconstructing the position of a

point having a depth value of 0.45.

Figure 4-4: Reconstructing the position of a point having depth value 0.45 by interpolating between

the near and far plane

25

4.3.2 Encoding of Surface Normals

A common technique used in deferred renderers is to store only two components of the

normal in the GBuffer. As the normal has unit length the third component can be

reconstructed. In this case memory consumption is traded for computational costs. This

however yields to slight errors [23].

The simplest approach to encoding assumes that only normals, which face in the direction

of the camera, are seen. By storing the ὼ and ώ components of the normal in view space

the ᾀ component can be reconstructed by making use of the fact that the following equation

is true for normalized vectors ὼ² + ώ² + ᾀ² = 1. Thus, the ᾀ component is retrieved by

solving this equation for ᾀ . The appropriate sign of the ᾀ component is then assumed due

to the fact that visible normals can only point towards the camera. However, normals can

also point away from the camera due to perspective projection [24]. In this case the

decoding fails and can produce errors, which are subtle and therefore hard to detect. A

good and fast alternative to this is presented by Mittring [25], which even offers better

precision.

However, in favor of simplicity, the proposed implementation stores all three components

of the normal in the buffer. Usually the components of the normal vector are stored in 16 bit

channels. Storing these in 8 bit channels produces quantization errors, which are most

apparent when specular lighting is involved. In the presented approach 8 bits are sufficient,

as specular lighting is ignored and the resulting errors are hardly notable.

26

4.4 Planetary Terrain Rendering

The following chapters give a comprehensive overview of the key concepts used to render

the planetary terrain. As already mentioned, the model is based on a terrain rendering

algorithm originally proposed by Vistnes [19].

At first the basic algorithm proposed by Vistnes [19] is presented. Chapter 4.4.2 then

shows how this model can be adapted to allow rendering of procedural planetary terrains,

while preserving its LOD functionality. Furthermore, the algorithms behind normal mapping

and multi texturing are revealed and it is shown how the final values are rendered into the

GBuffer. Chapter 4.4.4 finally describes how frustum culling can be implemented efficiently

and discusses the resulting performance gain.

The full source code of the planetary terrain shader is provided in Appendix A.

4.4.1 Basic Algorithm

This chapter serves as a brief introduction to the basics of the planar terrain rendering

algorithm originally proposed by Vistnes [19].

The terrain algorithm is based on a quad-tree approach to implement its LOD functionality.

Imagine a simple block of triangles that lies in the ὼ, ᾀ plane of a coordinate system. This

block can be recursively divided into a number of smaller quadratic blocks. Each division

results in four children, which are four times smaller than the parent. Each block is

represented by a fixed quantity of vertices. The number of vertices along an edge of the

quadratic block describes the ὄὰέὧὯίὭᾀὩ of the quad-tree. Parts of the plane that are

divided more often have therefore a higher triangle density. The number of divisions

represents the LOD of this part of the terrain.

Figure 4-5: Divided blocks with different LOD

27

Figure 4-5 shows a plane with different LOD. The red outlined blocks are the result of the

first division. The bottom, right block then got divided into four child blocks (green outline).

Finally the bottom, right block of these children got divided again into four additional

children (blue outline). As each block contains an equal number of triangles, the bottom

right corner has the highest density of triangles.

The primary advantage of this model is the very low memory requirements when

implemented with shaders. In this case itôs possible to render an unlimitedly sized terrain

by using a very small vertex buffer, which represents a single block.

4.4.1.1 Calculating the position

The vertices of each block originally form a planar quadratic block that lies flat on the ὼ, ᾀ

plane. The values of the vertices along the ὼ and ᾀ axis range from 0 to 1. The position of a

vertex within this coordinate system is from now on referred to as ὖέίὄὰέὧὯ.

The terrain is composed of many different blocks with different scales, as described above.

Therefore the vertices of the block need to be positioned on the right location within this

particular terrain. To accomplish this, the blocks are transformed into a new coordinate

system, which is from now on refered to as the όὺύ coordinate system. At first the ό and ὺ

coordinates are calculated. These ό and ὺ coordinates can be determined by calculating

three values: a ίὭᾀὩ, a όὓὭὲ and a ὺὓὭὲ value. ίὭᾀὩ, as the name implies, describes the

size of a block and thus the length of an edge along the ό and ὺ axis. The όὓὭὲ and ὺὓὭὲ

values describe the offset of the block from the origin along the ό and ὺ axis respectively.

The values of the ό and ὺ axis range from 0 to 1. The positioning of a block on the ό and ὺ

axis is shown in Figure 4-6. The highlighted block for example has a ίὭᾀὩ of 0.25, a όὓὭὲ

value of 0.5 and a ὺὓὭὲ value of 0.25.

Figure 4-6: Positioning of a block within the όὺύ coordinate system using bias values and a size

28

The ύ axis describes the elevation of the terrain. The original algorithm uses a height field

texture to elevate vertices. Note that the όὺ coordinates of the vertices range from 0 to 1

and so they can be used as texture coordinates to obtain an elevation value from a height

map.

The όὺύ coordinates of a vertex can therefore be calculated as described in Equation 4-4.

ὴέίὟὠὡ .ό= ὴέίὄὰέὧὯ.ὼz ίὭᾀὩ+ όὓὭὲ

ὴέίὟὠὡ .ὺ= ὴέίὄὰέὧὯ.ᾀz ίὭᾀὩ+ ὺὓὭὲ

ὴέίὟὠὡ .ύ= ὩὰὩὺὥὸὭέὲ

Equation 4-4

ὴέίὟὠὡ describes the position of the vertex in the όὺύ coordinate system and ὩὰὩὺὥὸὭέὲ

the elevation of the vertex along the ύ axis, as described above.

After obtaining a position within the όὺύ coordinate system, the vertices are transformed to

world space. This is usually done by a scaling matrix that scales the vertices to the desired

dimension of the terrain in world space.

Some of the algorithms in the following chapters need to calculate certain positions on a

single block. These positions are often described relative to the όὺύ coordinate system

with the aid of certain values. These values are shown in Figure 4-7 and given as

described in Equation 4-5.

όὓὭὨ=

ίὭᾀὩ

2
+ όὓὭὲ

όὓὥὼ= ίὭᾀὩ+ όὓὭὲ

ὺὓὭὨ=
ίὭᾀὩ

2
+ ὺὓὭὲ

ὺὓὥὼ= ίὭᾀὩ+ ὺὓὭὲ

Equation 4-5

Figure 4-7: Important values of a block on the ό and ὺ axis used by successive algorithms

29

4.4.1.2 Implementing Level of Detail Functionality

When a block gets divided into four children, the new values for ίὭᾀὩ, όὓὭὲ and ὺὓὭὲ are

calculated for each children. The values are given as described in Equation 4-6.

ίὭᾀὩὅὬὭὰὨ1,ὅὬὭὰὨ2,ὅὬὭὰὨ3,ὅὬὭὰὨ4 =

ίὭᾀὩ

2

όὓὭὲὅὬὭὰὨ1 = όὓὭὲ, ὺὓὭὲὅὬὭὰὨ1 = ὺὓὭὲ

όὓὭὲὅὬὭὰὨ2 = όὓὭὨ, ὺὓὭὲὅὬὭὰὨ2 = ὺὓὭὲ

όὓὭὲὅὬὭὰὨ3 = όὓὭὲ, ὺὓὭὲὅὬὭὰὨ3 = ὺὓὭὨ

όὓὭὲὅὬὭὰὨ4 = όὓὭὨ, ὺὓὭὲὅὬὭὰὨ4 = ὺὓὭὨ

Equation 4-6

The actual decision, if a block is divided into four children, is based on the simple test

shown in Equation 4-7 [19].

 ὰ

Ὠ
< ὅ

Equation 4-7

Where the value ὰ denotes the distance from the center of the block to the camera, Ὠ the

world space extend of a single triangle and ὅ an adjustable constant that controls the

quality and therefore the number of divisions of the rendered terrain. If the test is true, the

current block will be divided into four children. If it fails, the current block will be rendered.

This evaluation is an adaption of an idea introduced by Röttger et al. [26]. Note that a

higher value for ὅ results in more divisions and therefore in a higher triangle density near

the camera. The maximum number of divisions is usually limited by a threshold value.

4.4.1.3 Avoiding Cracks

A common drawback of most terrains algorithms which offer LOD functionality is that

cracks appear at the transitions of blocks with different LOD. A simple solution to this

problem is proposed by Ulrich [27]. In his model, the vertex buffer of the block is extended

by so called skirt vertices around the border of the block. Then the original vertices (inside

the skirt) are initialized with a ώ position of 1 and the skirt vertices with a ώ position of 1.

Note that the ώ component of each vertex was unused till now, as the elevation is applied

in the όὺύ coordinate system. The assignment of ὴέίὟὠὡ .ύ in Equation 4-4 is then

changed to a multiplication as shown in Equation 4-8.

ὴέίὟὠὡ .ύ= ὴέίὄὰέὧὯ.ώz ὩὰὩὺὥὸὭέὲ
Equation 4-8

This creates a vertical skirt (vertices with negative elevations) at the borders of each block

as shown in Figure 4-8.

30

Figure 4-8: The borders of a block are extended with a vertical skirt

As a result the cracks are filled by a vertical skirt. Although, this approach can cause some

lighting problems and texture stretching near the borders of a block, the crack fillings are

usually too small to be distracting [19].

4.4.2 Generating a Planetary Terrain

As briefly introduced in chapter 3.2 most planar terrain rendering algorithms can be

adopted to render planetary terrains. The following sections describe how the terrain

rendering model described in the previous chapter can be adapted to allow a creation of

spherical terrains.

4.4.2.1 Generating a Spherical Terrain out of a Cube

Generating spherical terrains can be achieved by forming a cube out of six planar terrain

surfaces, where the center of the cube is in the origin of the coordinate system. After this,

the vertices of each surface are normalized, which results in a perfect unit sphere. Finally,

each vertex is extruded by an elevation factor and the radius of the planet itself. This

approach is an adaption of an approach proposed by OôNeil [13] and is shown in Figure

4-9.

Figure 4-9: The process of modeling spherical terrains: (1) forming a cube out of six planar terrains

(2) normalizing each vertex and (3) finally extrusion by planetary radius and an elevation factor

31

In the following chapters positions are described in three different spaces.

¶ In step (1) the positions on each face of the cube are described relative to one of

the six terrains. These positions are described by the όὺύ coordinate system,

which was introduced in chapter 4.4.1.1. An important change however is the fact,

that the elevation value is not applied in the όὺύ coordinate system anymore.

Instead this is done in step (3).

¶ The normalized positions of step (2) are described as positions on the unit sphere.

¶ The resulting positions after step (3) are the positions in world space.

Note that the position on the unit sphere can be retrieved by normalizing the position in

world space.

In the proposed implementation, the three steps shown in Figure 4-9 are carried out in a

vertex shader as shown in Listing 4-1.

// input - posBlock: position within the vertex buffer of the block

// output: position after transformation to uvw space

float3 getUVW(in float3 posBlock)

{

 float3 posUVW;

 posUVW.x = posBlock.x * g_sizeBlock + g_ uMin ;

 posUVW.y = 0.0f ;

 posUVW.z = p osBlock.z * g_sizeBlock + g_vMin ;

 return posUVW;

}

...

// transform position to uvw space

float3 posUVW = getUVW(input.pos);

// transform to cube and normalize to obtain position on unit sphere

float3 posCube = mul (float4 (posUVW, 1.0f), g_cube).xyz;

float3 posUnitSphere = normalize (posCube);

// extrude by planetary radius and an elevation factor to obtain

// position in world space

float elevation = getElevation(posUnitSphere) * input.pos.y;

float3 pos World = posUnitSphere * (g_Rg + elevation);

Listing 4-1: Calculating planetary position in vertex shader

At first the όὺύ coordinates of the current vertex is obtained. This basically positions the

block within the planar terrain. By multiplying these blocks with a certain matrix they are

rotated and translated to form a cube. The resulting positions on the cube are then

normalized to obtain the position on the unit sphere. This position is then scaled again by

32

the radius of the planet ὙὫ and an elevation factor. The called function to obtain an

elevation factor for a given position is explained in further detail in chapter 4.4.2.3. Note

that the skirt vertices are also extruded by the planetary radius but get a negative elevation

to fill the cracks.

4.4.2.2 Adapting th e Level of Detail Functionality

LOD functionality needs to be adapted due to the fact that the blocks of the terrain are now

curved. For this the calculations of Ὠ, the world space extend of a single triangle, need to

be adjusted to approximate the arc length of a block in world space.

This approximation is done by transforming the positions ὖ0, ὖ1 and ὖ2 as depicted in

Figure 4-10 from the όὺύ coordinate system into world space.

Figure 4-10: Approximating the arc length of a block

This results in the corresponding points with respect to world space: ὖ0ὡέὶὰὨ, ὖ1ὡέὶὰὨ and

ὖ2ὡέὶὰὨ. The final world space extend Ὠ of a single triangle is then given as shown in

Equation 4-9.

ὥὶὧὒὩὲὫὸὬ= ὰὩὲὫὸὬὖ1ὡέὶὰὨ ὖ0ὡέὶὰὨ +

 ὰὩὲὫὸὬ(ὖ2ὡέὶὰὨ ὖ0ὡέὶὰὨ)

Ὠ=
ὥὶὧὒὩὲὫὸὬ

ὄὰέὧὯίὭᾀὩ 1

Equation 4-9

Where ὰὩὲὫὸὬ calculates the length of the given vector.

Note that, due to performance reasons, the actual elevation of the vertex is not taken into

account when calculating the arc length. The planet is thus treated as a perfect sphere.

However, this is negligible as the arc length is approximated anyway.

33

4.4.2.3 Generatin g Elevations using Perlin Noise

As the planet is visualized on many different scales, a function is needed that allows

generating rough mountain ranges that are visible from far away as well as very fine

bumps when the camera is near the ground.

It is common to elevate terrains using a height map texture. The drawback of this approach

is that a height map is limited in its resolution. In order to preserve details when near the

ground (and prevent an oversampling of the texture) a height map with an unreasonably

high resolution would be needed. To overcome this problem the planetary surface is

elevated procedurally by a function that allows retrieving both: a rough surface pattern as

well as fine details.

The noise function proposed by Perlin [28] is one of the most important noise functions to

create procedural content. The function offers controlled randomness, which means, that

the same input always produces the same output. What makes it particularly useful for

rendering large scale terrains is the fact, that it outputs smoothed noise, rather than

discrete noise for values that are continuous (for example texture coordinates). Increasing

and decreasing the inputted value range looks like zooming in and out of the resulting

noise. It doesnôt matter how far you zoom in ï the outputted noise is always perfectly

smooth.

This allows generating a rough, low frequency noise by supplying values in a lower range

and high frequency details by supplying values in higher ranges. The resulting values can

also be summed up to generate a so called fractal sum as shown in Figure 4-11.

Figure 4-11: Fractal sum of two 2D Perlin noise functions with different ranges for ὼ and ώ

The dimension of a Perlin noise function determines for how many dimensions smoothed

values can be generated. For generating the planetary terrain, a 3D Perlin noise function is

34

used to generate a smooth and random surface elevation. Although the Perlin noise

function is considered a fast algorithm for the resulting quality, it is still quite expensive.

In the proposed model an elevation in the range [0,4] is generated for each vertex by

combining the results of two Perlin noise functions. Listing 4-2 shows a function which

returns a random but perfectly smooth elevation value depending on the position on the

unit sphere.

static c onst float g_lowFrequencyHeight = 3.25f ;

static const float g_highFrequencyHeight = 0.75f ;

static const float g_lowFrequencyScale = 400.0f ;

static const float g_highFrequencyScale = 2500.0f ;

...

// input - posUnitSphere: position on the unit sphere

// output: elevation value generated by fractal sum

// of high and low frequency Perlin noise

float getElevation(in f loat3 posUnitSphere)

{

 float noiseHeight = 0;

 // low frequency noise

 float n = Perlin(posUnitSphere * g_lowFrequencyScale);

 n = shift(n);

 noiseHeight += n * g_lowFrequencyHeight;

 // high frequency noise

 n = Perlin(posUnitSphere * g_highFrequencyScale);

 n = shift(n);

 noiseHeight += n * g_highFrequencyHeight;

 return noiseHeight;

}

Listing 4-2: Generating an elevation value

The Perlin noise function returns a smooth random value between 1 and 1. This value is

then shifted to the range [0,1] and scaled by a constant that determines the maximum

elevation for this frequency. This is done two times to generate low and high frequency

noise. Note that the second time, the input value is scaled by a considerably greater value

to obtain high frequency noise. Then the fractal sum is calculated by combining high and

low frequency noise.

Figure 4-12 shows the results of the noise function and demonstrates the effectiveness of

combining high and low frequency noise. The importance of high frequency noise becomes

more apparent when approaching the planetary surface.

35

Figure 4-12: Importance of high frequency noise

(top row) using only low frequency noise

(bottom row) combining low and high frequency noise

4.4.2.4 Texturing

A problem with spherical terrains is the fact that a sphere cannot be textured by a

rectangular image without any distortions. This problem is a direct result of the so called

hairy ball theorem [29]. Fortunately, the original texture coordinates of the planar terrain (as

described in chapter 4.4.1.1) offer minimal distortions (like stretching at the center of each

face and seams at edges between each terrain) and can be reused.

Note that the coordinates in terrain space range from 0 to 1 and would stretch a single

texture over a whole terrain, so these coordinates are scaled accordingly to repeat the

texture several times. This however yields to visible repeating texture patterns on distant

terrains. In order to reduce these patterns the scaling of these texture coordinates are a

function of the surfaceôs distance to the camera as proposed by Rosa [30].

// controls which distance is considered as Near or Far

static c onst float g_textureDistNear = 100 ;

static const float g_textureDistFar = 1000 ;

// scale factors for textures

static const float g_grassTexScaleNear = 600.0f ;

static const float g_grassTexScaleFar = 8.0f ;

static const float g_stoneTexScaleNear = 600.0f ;

static const float g_stoneTexScaleFar = 32.0f ;

// value between 0 and 1 that controls the height

// where the stone texture starts to blend in

static const float g_stoneColorStart = 0.4f ;

// factor that controls the softness of

// transition from grass to stone texture

