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Kurzfassung  
 

Für die realistische Darstellung der Erde unter verschiedensten Größenordnungen, ist eine 

korrekte Visualisierung der atmosphärischen Streuung von äußerster Wichtigkeit. Aufgrund 

der hohen Komplexität der entsprechenden physikalischen Gleichungen ist jedoch eine 

Berechnung in Echtzeit nicht möglich. Aufgrund dessen werden üblicherweise vereinfachte 

Modelle für die Berechnung herangezogen, welche üblicherweise geringere Genauigkeit 

oder eingeschränkte Flexibilität bieten. 

 

In dieser Arbeit wird gezeigt wie Planeten mit physikalisch korrekten Atmosphären mittels 

Deferred Rendering visualisiert werden können. Dabei wird auf dem Modell von Bruneton 

und Neyret aufgebaut, welches die entsprechenden Gleichungen in einem separaten 

Vorberechnungsschritt löst. Diese vorberechneten Daten werden anschließend benutzt um 

die Atmosphärische Streuung mittels eines Post-Effekts darzustellen. Die daraus 

resultierenden Vorteile wären unter anderem eine vereinfachte Integration in bestehende 

Systeme, geringere Komplexität, vorhersehbare Berechnungskosten sowie die Vermeidung 

von Shader Permutationen. Die Darstellung des Planeten erfolgt auf Basis eines Würfels, 

welcher in einzelne Blöcke eingeteilt wird. Um die Darstellung des Planeten in 

unterschiedlichen Größenordnungen zu ermöglichen, wird ein Sichtbarkeits- sowie 

Detailierungsalgorithmus angewandt. Zudem wird Normal Mapping, Multi-Texturing sowie 

eine prozedurale Generierung der Oberfläche unterstützt. 

 

Der erste Teil der Arbeit stellt die entsprechenden physikalischen Modelle vor und erklärt 

verschiedenste Phänomene der Atmosphäre, wie beispielsweise die Änderung der 

wahrgenommenen Farbe mit zunehmender Distanz, die Farbe des Himmels und den 

Lichtring der Sonne. Im zweiten Teil wird die Darstellung des Planeten, der Sonne und der 

Atmosphäre im Detail erklärt. Des Weiteren werden die Resultate des vorgestellten Models 

unter verschiedensten Bedingungen demonstriert. Der letzte Teil behandelt schließlich 

mögliche Einschränkungen sowie Verbesserungsvorschläge des präsentierten Verfahrens.  

Schlagwörter: Atmosphärische Streuung, Planet, Deferred Rendering, 3D 

Computergrafik 
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Abstract  
 

Correct atmospheric scattering effects are crucial when visualizing the earth on varying 

scales or time of the day. Due to the complexity of the corresponding light transfer equations, 

current hardware is not able to compute these effects in real-time. Hence, interactive frame 

rates are usually achieved by various simplifications over the physical model, which usually 

results in less accuracy or flexibility.  

 

This thesis presents a deferred approach to rendering physical correct atmospheres and 

planetary terrains in real-time. The atmospheric model is based on the work of Bruneton and 

Neyret and pre-computes the scattering equations in a separate offline pass. This pre-

computed data is then utilized, to apply atmospheric scattering as a single post-processing 

effect. Using a post-process technique has several advantages over a traditional approach. 

These are: simplified integration, reduced complexity, predictable rendering costs and 

prevention of shader permutations. The planetary terrain is based on a tiled block algorithm 

which utilizes a cube as its base geometry. To allow visualization on different scales, the 

proposed model offers level of detail and frustum culling capabilities. In addition, the planets 

are generated procedurally using noise functions and allow for multi texturing and normal 

mapping. 

 

The first part of this thesis introduces the reader to the physical model of atmospheric 

scattering and explains various resulting phenomena such as the shifted colors of distant 

objects, the color of the sky and the visible halo surrounding the sun. The second part 

examines the proposed approach and provides detailed explanations on rendering the 

terrain, the sun and the atmosphere. Furthermore, the results of this model are demonstrated 

under various conditions. The last part of this thesis reveals the limitations of the presented 

approach and proposes various improvements for future work. 

Keywords: Atmospheric scattering, planet, deferred rendering, 3d computer graphics 
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1 Introduction  

Due to natural perception and our exposure to the physical world, we have a quite accurate 

conception of how things behave in our everyday life. We are therefore very sensitive to 

artificial approximations of the real world, even if the exact physical models are unfamiliar 

to a large extend. Thus reproducing physical phenomena is a vastly researched topic in 

computer graphics. 

 

One of the main topics of physical approximation in computer graphics is the scattering of 

light in participating media. Atmospheric scattering describes the scattering of light due to 

the ingredients of the earths atmosphere (gases, water vapor, dust particles etc.).  

 

The atmosphere of the earth is a layer of gases surrounding the earth. These gases are 

retained due to the earthôs gravity. When light passes through this atmosphere, air 

molecules and so called aerosols (particles like dust or pollution) interact with it and scatter 

the light in different directions. This scattering is called atmospheric scattering. Simulation 

of atmospheric scattering is essential for reproducing realistic outdoor scenery or the earth 

viewed from space. One of the most obvious effects of atmospheric scattering is the blue 

color of the sky and the red and yellow colored sun during sunrise and sunset. A more 

subconscious effect is the blue tint of distant objects. This is the reason why for instance 

mountains are perceived with slightly washed out colors. These effects shift with changing 

composition within the atmosphere. So, for example, an increase of water vapor on a rainy 

day has the effect that everything looks a little bit grayish and even more washed out. 

 

This thesis is built on previous research in the field of atmospheric scattering and extends 

these in various aspects. It makes use of pre-computed tables and therefore solves the 

complex scattering equations in a separate offline pass to preserve interactive frame rates 

during rendering. These pre-computed tables are then used to apply atmospheric 

scattering to an arbitrary scene in a single post-processing effect by using deferred 

rendering. Although the focus of this work lies upon atmospheric scattering, it is also 

shown how spherical terrains are generated by using a tiled-block approach. 

 

In the following chapter the physical models of atmospheric scattering are discussed in 

further detail. Related work in the field of atmospheric scattering, terrain- and deferred 

rendering is presented in chapter 3. Chapter 4 introduces the reader to the proposed 

model and shows how atmospheric scattering can be applied to a spherical terrain as a 

post-processing effect. Limitations and future work are then discussed in chapter 5. 
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2 Principles  of Atmospheric Scatte ring  

This chapter serves as an introduction to the physical models of atmospheric scattering 

and introduces the reader to the most important light transfer equations. 

2.1 Introduction to the Physical M odels  

The sun radiates light of all wavelengths in nearly equal intensities. When the sunlight 

penetrates the atmosphere it gets attenuated. This happens due to the various ingredients 

of the atmosphere which scatter and absorb the sunlight. Scattering of light differs with 

particle size and varies with wavelength.  

 

Smaller air molecules scatter shorter wavelength light considerably stronger. Blue light has 

the shortest wavelength, so it is scattered much stronger by these than longer wavelength 

light. As blue light gets scattered and reflected all over the place, it reaches our eyes from 

every direction. This is the reason why the sky is blue on a clear day. When the sun is near 

the horizon at sunset or sunrise, the light travels a long distance through the atmosphere 

and therefore most of the short wavelength light, like blue and green light, gets scattered 

away, so it is perceived primarily with red colors. 

  

Larger particles such as dust and pollution are called aerosols and basically scatter light of 

all wavelengths equally. In addition, aerosols also absorb parts of the light. Aerosols are 

the reason why the sky looks gray and washed out on a hazy day. 

 

The proportion of light that is scattered away from its incident direction is a product of a 

scattering coefficient ‍ί and a phase function ὖὬ. The angle — describes the angle 

between the incoming light ray and the scattering direction. The phase function then 

returns the amount of light that is scattered under the given angle —. Unlike air molecules 

which basically scatter light in every direction equally, aerosols scatter light primarily in the 

forward direction, which means they are scattered roughly in the same direction in which 

they originally started. The phase function describes this angular dependency and 

therefore differs for air molecules and aerosols.  

 

Atmospheric scattering commonly used in computer graphics considers a clear sky model, 

which is only based on two constituents, air molecules and aerosols, in a thin spherical 

layer of decreasing density between the bottom ὙὫ and the top Ὑὸ of the atmosphere [1].  

2.2 Rayleigh Scattering  

Scattering of air molecules and particles, which are smaller than 10% of the lightôs 

wavelength, is given by the Rayleigh theory [2], discovered and named after the Nobel 
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prize winner Lord Rayleigh. The scattering coefficient for Rayleigh scattering ‍Ὑ
ί can be 

obtained as shown in Equation 2-1. 

 

‍Ὑ
ί  ‗ =

8“3 ὲ2  1 2

3ὔ‗4
 Equation 2-1 

 

Constants of this equation are ὲ which describes the refractive index of air and ὔ which 

stands for the molecular density at the bottom of the atmosphere ὙὫ. Rayleigh scattering is 

inverse proportional to the 4th power of the wavelength ‗, which explains the strong 

attenuation of short wavelength light. 

 

The extinction coefficient ‍Ὡ determines how much light is scattered or absorbed. Air 

molecules only reflect light and do not absorb it. Therefore the corresponding extinction 

coefficient of air molecules equals the scattering coefficient: ‍Ὑ
Ὡ= ‍Ὑ

ί. 

 

As it was briefly stated in chapter 2.1, air molecules scatter light in every direction in nearly 

equal manner. Figure 2-1 shows the relative intensity of scattered light for the angles [0,“] 

due to Rayleigh scattering.  

 

 

Figure 2-1: Rayleigh scattering (‗= 0.45µm)  

(left) plot for range [0,“] (right) polar plot for range [0,2“] 

 

As shown in Figure 2-1 the relative intensity of the scattered light falls off slightly at angles 

near 
“

2
.  

 

An approximation of the corresponding phase function (described in chapter 2.1) for 

Rayleigh scattering ὖὬὙ is given by Equation 2-2. 

 

ὖὬὙ‘ =
3

16“
1 +  ‘2  

where  ‘= cos— 
Equation 2-2 
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2.3 Mie Scattering  

Mie scattering describes the scattering of aerosols, which are particles larger or equal to 

10% of the lightôs wavelength, and is named after Gustav Mie [3]. According to Nishita et 

al. [4] the scattering coefficient for Mie scattering ‍ὓ
ί equals the scattering coefficient for 

Rayleigh scattering except the 
1

‗4 dependence and is calculated as shown in Equation 2-3. 

 

‍ὓ
ί=

8“3 ὲ2  1 2

3ὔ
 Equation 2-3 

 

Aerosols also absorb parts of the incident light. The corresponding extinction coefficient of 

aerosols is the sum of an absorption coefficient ‍ὓ
ὥ and the scattering coefficient:  

‍ὓ
Ὡ= ‍ὓ

ὥ+ ‍ὓ
ί. 

 

The strong forward scattering of aerosols is shown in Figure 2-2. As can be seen most of 

the light is scattered in its original direction (scattering angles close to 0). Thus, the relative 

intensity scattered will fall off drastically if the scattering angle differs slightly from the 

incident direction. 

 

 

Figure 2-2: Mie scattering 

(left) plot for range [0,“] (right) polar plot for range [0,2“] 

 

This angular dependency of Mie scattering can be approximated by the improved Henyey-

Greenstein phase function of Cornette and Shanks [5], which is given by Equation 2-4. 

 

ὖὬὓ ‘ =
3

8“
 

1 Ὣ2 (1 +  ‘2)

2 +  Ὣ2 (1 +  Ὣ2  2Ὣ‘)3 2ϳ
 Equation 2-4 

 

where Ὣ affects the symmetry of scattering. Setting Ὣ to 0 basically approximates Rayleigh 

scattering [6]. 
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2.4 Optical Depth  

The Optical Depth describes the optical thickness of a medium and is a measure of light 

transparency over a given path. It is dependent on the atmospheric density, which 

decreases toward the top boundary exponentially. The density ratio ” at position ὼ is given 

by Equation 2-5. 

 

”Ὑ(ὼ) = Ὡ
Ὤ(ὼ)

ὌὙ                ”ὓ(ὼ) = Ὡ
Ὤ(ὼ)

Ὄὓ  Equation 2-5 

 

where Ὤ describes the distance of ὼ to ὙὫ and Ὄ denotes the scale height. The scale height 

is used to vary the density ratio between ὙὫ and Ὑὸ and is different for air molecules and 

aerosols. 

 

The optical depth of a path Ὓ can be calculated by integrating the extinction coefficients 

and the density ratio over this particular path as shown in Equation 2-6. 

 

ὸ‗,Ὓ =  ‍Ὥ
Ὡ(

Ὥ ‭  Ὑ,ὓ 

Ὓ

‗)”Ὥ(ί)Ὠί 
Equation 2-6 

 

The optical depth can be used to obtain the transmittance of the medium and so the 

extinction factor along a path as described in Equation 2-7. 

 

ὊὩὼ(‗,Ὓ) =  Ὡὸ(‗,Ὓ)  Equation 2-7 

 

In this context, the extinction factor can be understood as the fraction or percentage of an 

incident light that remains after traversing the atmospheric medium over a given path. 

 

Most of the following functions depend on the wavelength ‗. To enhance readability 

denoting this dependency is omitted from now on. 

2.5 The Light Scattering Equation s 

The light scattering equations describe how much light arrives at a position due to 

scattering within the atmosphere. This light can be expressed as a series of linear 

operations. Therefore, the resulting light intensity arriving at position ὼ over the path ὼO ὼ0 

is basically a sum of three components as shown in Equation 2-8: direct sunlight ὒ0, in-

scattered light ὒὭὲ[L] and reflected light ὒὶὩὪ[ὒ] [1]. 
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ὒὼ,ὼ0,ὼί =  ὒ0(ὼ,ὼί) + ὒὭὲ[ὒ](ὼ,ὼ0,ὼί) + ὒὶὩὪ[ὒ](ὼ,ὼ0,ὼί)  
Equation 2-8 

 

Where ὼί describes the position where the sunlight enters the atmosphere. Each of these 

three components is described in further detail in the following chapters.  

 

Note that in the following chapters light is also expressed using a more general term 

ὒz(ὼ,ὺ,ί), which describes light that reaches a position ὼ from direction ὺ when the sun is 

in direction ί [1] (ὒz can be either ὒ, ὒ0, ὒὭὲ or ὒὶὩὪ). The direction vectors ὺ and ί can be 

described by two positions (ὼίὸὥὶὸ,ὼὩὲὨ). In this case the vector describes the normalized 

vector resulting from ὼὩὲὨ ὼίὸὥὶὸ. 

2.5.1 Direct Sunlight  

Sunlight incident to the outer boundary of the atmosphere at point ὼί is attenuated while 

traversing the atmospheric medium as shown in Figure 2-3. The remaining light reaching 

point ὼ due to direct sunlight is obtained by attenuating the incident light intensity at ὼί over 

the path ὼO ὼί as described by Equation 2-9. 

 

ὒ0 ὼ,ὼί = ὊὩὼ ὼO ὼίὒὭὲὧὭὨὩὲὸ 
Equation 2-9 

 

where ὒὭὲὧὭὨὩὲὸ describes the incident sunlight at ὼί. Note that ὒ0 is 0 when the direction 

ὼ,ὼί  does not equal the direction to the sun or when the sun is occluded [1] (eg. by a 

mountain).  

 

 

Figure 2-3: Sunlight traverses the atmosphere between ὼί and ὼ 

 

2.5.2 In-scattered Light  

When light is scattered it is removed from the original ray, but as long as it isnôt absorbed, it 

will get reflected and in-scattered into the path of a ray headed in a different direction [7]. 
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This results in a so called self illumination of the participating medium [8]. The in-scattered 

light is a result of the phase function ὖὬὙ and ὖὬὓ for air molecules and aerosols 

respectively. Figure 2-4 shows the scattering at ώ towards ὼ. 

 

 

Figure 2-4: Scattering of light at ώ towards ὼ is calculated by integrating over a sphere 

 

The light scattered at a point ώ into direction ὺ is given by Equation 2-10 [1]. 

 

ὐ[ὒ] ώ,ὺ,ί=  ‍Ὥ
ί

Ὥ ‭  Ὑ,ὓ 

4“

0

”(ώ)ὖὬὭὺ.ύὒ(ώ,ύ,ί)Ὠύ Equation 2-10 

 

The total intensity of in-scattered light along a path ranging from ὼO  ὼ0 is obtained by 

integrating over all scattering points along this particular path as shown in Equation 2-11 

[1]. 

 

ὒὭὲ[ὒ] ὼ,ὼ0,ὼί =  ὊὩὼ

ὼ0

ὼ

ὼO ώ ὐ[ὒ] ώ,ὺ(ὼ,ὼ0),ί(ώ,ὼί) Ὠώ Equation 2-11 

 

Note that the light in-scattered at each point is attenuated before reaching position ὼ.  

2.5.3 Reflected L ight  

Usually, light incident to a surface is not absorbed. Instead it is reflected to a different 

direction. The light incident to a certain point on a surface is commonly referred to as the 

irradiance. The irradiance can be calculated by integrating over the hemisphere of surface 

point ὼ0 as described by Equation 2-12 [1]. 

 

Ὅὒ ὼ0,ί= ὒὼ0,ύ,ίύ.ὲὼ0 Ὠύ

2“

0

 
Equation 2-12 

where ὲ describes the surface normal at point ὼ0. 

The remaining intensity of light reflected at ὼ0 and arriving at ὼ is obtained by attenuating 

the reflected light along the path ὼO ὼ0 as described by Equation 2-13 [1]. 
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ὒὶὩὪ[ὒ] ὼ,ὼ0,ὼί = ὊὩὼ ὼO ὼ0  
‌ὼ0

“
Ὅ[ὒ](ὼ0,ίὼ0,ὼί) Equation 2-13 

 

where ‌ describes a reflectance factor at ὼ0  (basically a value between 0 and 1). The term  
1

“
 is a normalization factor, as the integration over the hemisphere yields “. 

 

Figure 2-5 depicts the calculation of reflected light. 

 

 

Figure 2-5: Irradiance at surface point ὼ0 is calculated by integrating over the hemisphere. Parts of 

this light are reflected towards ὼ 

 

2.6 Aerial Perspective  

Depending on the time of the day and the composition of the atmosphere, objects far away 

are perceived with slightly shifted colors. This is what is generally referred to as the aerial 

perspective. According to Goldstein this effect is a fundamental requirement for humans to 

estimate distances, especially for unfamiliar objects [9]. 

 

Although aerial perspective is not a special case of atmospheric scattering, it is mentioned 

here for completeness. Special handling of aerial perspective in computer graphics papers 

is usually the result of various simplifications made to the scattering equations and 

therefore it is very common to devote an own chapter to it. Aerial perspective is just the 

result of an extinction and an addition part. For its calculation, the in-scattered and 

reflected light needs to be taken into account as described by Equation 2-14. 

 

ὒὥὩὶὭὥὰ ὴὩὶίὴὩὧὸὭὺὩ(ὼ,ὺ,ί) = ὒὭὲ[ὒ] +  ὒὶὩὪ[ὒ] (ὼ,ὺ,ί) Equation 2-14 

 

The reflected light on a distant object is scattered on its way to the observer. On a clear 

day the blue light is most affected. Therefore a large part of the blue color gets scattered 

away before reaching the observer. Without in-scattering this would just remove light, 

giving distant objects a strong shift towards yellow and brown tones as green and 
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especially red colors are hardly affected by the scattering of air molecules. But scattering 

also adds colors. As mentioned before, blue light is scattered stronger and therefore has a 

higher probability to get scattered into an arbitrary viewing ray. This is what gives distant 

objects usually a blue hue. This shifting gets stronger with increased distances as more 

light is in-scattered. This ultimately leads to a whitening of objects very far away. The effect 

of aerial perspective is best seen on distant dark or shadowed objects. These objects are 

perceived with a strong hue towards blue, as little light is reflected and the impact of in-

scattering is seen more clearly. In contrast to this, the effect of light scattering is less 

apparent on white objects, as the addition and extinction of blue light counter each other 

for the most part [10]. 

 

As stated above, this effect varies with composition of the atmosphere. At an atmospheric 

condition with increased aerosols, scattering is less dependent on wavelength and 

therefore green and red light gets scattered stronger. The result is that distant objects are 

perceived with a general loss of contrast and the colors are basically shifted towards gray 

[10]. 

2.7 Sunlight  and the Color of the Sky 

The colors of the sun and the sky are also the result of the scattering equations described 

in chapter 2.5.  

 

ὒίόὲ(ὼ,ὺ,ί) = ὒ0 +  ὒὭὲ[ὒ] (ὼ,ὺ,ί)  
Equation 2-15 

 

The color of the sun perceived at position ὼ is described by Equation 2-15. It is a 

combination of direct sunlight and in-scattered light. 

 

As the sun radiates light of all wavelengths in nearly equal intensities, it is perceived as 

almost pure white. However, when the sunlight penetrates the atmosphere it gets 

attenuated due to scattering. Depending on the distance the light rays traverse within the 

atmosphere, the perceived color of the sun changes. The visible halo around the sun is the 

result of Mie-scattering, which scatters light more likely in its original direction and is 

therefore more obvious towards the direction of the sun. This effect is stronger in 

atmospheric conditions with increased aerosols (eg. hazy or rainy days). 

 

The color of the sky is the result of in-scattered light as shown by Equation 2-16. 

 

ὒίὯώ(ὼ,ὺ,ί) =  ὒὭὲ[ὒ](ὼ,ὺ,ί)  
Equation 2-16 



 

16 

Towards the horizon the sky is getting whiter (for the same reason why objects are getting 

whiter with distance ï as described in the previous chapter). An increase of Aerosols shifts 

the color of the sky towards gray. 

 

When the sun approaches the horizon at sunset or sunrise, the sunlight traverses a long 

path within the atmosphere and thus most of the blue light and some parts of the green 

light are scattered away before reaching an observer. Therefore the colors of the sky and 

the sun itself changes to yellow and red tones. In addition the slight fall off near 
“

2
 of the 

Rayleigh phase function (as mentioned in chapter 2.2) becomes more apparent, as the 

darkest part of the sky can be found near the zenith, while the region near and opposing 

the sun are the brightest.  

2.8 Multiple Scattering  

Considering just a single scattering event per light ray is generally referred to as single-

scattering. In reality, light rays are scattered multiple times and thus can change their 

direction more than once. This effect is usually called multiple scattering.  

 

Multiple scattering refers to a model, where multiple scattering events per light ray are 

taken into account. Figure 2-6 shows three different light rays. Ray a) is only scattered 

once and then stays on its direction towards ὼ. In a single-scattering model ray b) and c) 

would not be considered, as they are scattered multiple times. Ray b) depicts multiple in-

scattered light and ray c) multiple reflected light. 

 

 

Figure 2-6: a) single in-scattered light b) multiple in-scattered light c) multiple reflected light 

 

 

Recall that the total light reaching a point within the atmosphere can be expressed as a 

series of linear operations (as described in chapter 2.5). This means when taking multiple 

scattering into account, the total light reaching a point ὼ is calculated as shown in Equation 

2-17 [1]. 
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ὒ(ὼ,ὺ,ί) = ὒ0 + ὒὭὲ+ ὒὶὩὪ ὒ0 + ὒὭὲ+ ὒὶὩὪ ὒὭὲ+ ὒὶὩὪ [ὒ0] + Ễ 

= ὒ0 + ὒ1 + ὒ2 +  ȣ= ὒ0 + ὒὭ 

Equation 2-17 

 

ὒὭ describes the light that is scattered or reflected exactly Ὥ times [1]. 

 

In simpler atmospheric models multiple scattering is completely ignored, as leaving it out is 

less noticeable in midday scenarios, where the light beams are traversing short distances 

through the atmosphere. Yet, the effects of multiple scattering become crucial when the 

sun is near the horizon or in hazy conditions, as the light rays are much more affected by 

the atmospheric media. 
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3 Previous Work  

In this chapter relevant work devoted to atmospheric scattering as well as terrain and 

deferred rendering is reviewed. 

3.1 Atmospheric Scattering  

Over the past few years, there has been a considerably large amount of work devoted to 

reproducing atmospheric scattering.  

 

Hoffman and Preetham propose an atmospheric scattering model which is capable of 

producing real time frame rates without any pre-computation [7]. This is possible due to a 

simplification of the optical depth, as the atmospheric density is assumed to be constant. 

Basically, an extinction coefficient and the in-scattered light are calculated for every vertex 

in the scene. These two values are then combined in the pixel shader. In this model the 

observer is assumed to stay near the ground. Due to the assumption of constant 

atmospheric density, the model is not capable of realistically handling cases with 

substantial differences in terrain height and major changes of the observerôs altitude. 

 

OôNeil also proposes a real time approach [6]. His model basically solves the scattering 

equations by low sampling in the vertex shader. The phase function is then applied in the 

pixel shader to avoid interpolation artifacts. The model produces correct scattering for 

observers inside and outside of the atmosphere, but is only considering single scattering. 

To achieve real time frame rates without any pre-computation, he is using a polynomial 

scale function to calculate the optical depth. However, this scale function is only valid for a 

fixed ratio between the radius of the earth, thickness of the atmospheric layer and scale 

height. 

 

Schafhitzel et al. propose an approach of rendering planets with atmospheres by using a 

pre-computed table [11]. The proposed table stores the optical depth and is accessed by 

three parameters: the sun and view angle and the observerôs altitude. 

 

Bruneton et al. extends this approach with support for multiple scattering [1]. In addition, 

they introduce a new parameter by storing the angle between the view and sun direction. 

This allows for better parameterization, the reproduction of the earthôs shadow in the 

atmosphere and the possibility to simulate lightshafts. This results in a four dimensional 

table, which stores the in-scattered light. The optical depth and the surface irradiance are 

stored in two separate tables. 
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3.2 Planetary  Terrain  Rendering  

Visualizing a planetary terrain on many scales (e.g. on the planetary surface or in space - 

thousands of kilometers away) requires dynamic Level of Detail (LOD) algorithms to 

preserve details when near the ground. Most publications only deal with planar LOD terrain 

rendering, which is sufficient for most applications. To render spherical terrains (like whole 

planets) these algorithms have to be adapted accordingly.  

 

A common approach is to form a cube of six planar terrains where each vertex is then 

normalized to create a unit sphere. The vertices are then multiplied by the planets radius 

and a corresponding height to form a planetary structure. OôNeil adapts this approach by 

using the traditional ROAM algorithm [12] to render spherical terrains [13]. Hill however 

shows that the ROAM algorithm is not reasonable for modern hardware and proposes a 

tile-based approach with terrain chunks of fixed resolution to create a planetary terrain [14]. 

His model uses a quad-tree approach to replace one tile with four if a certain threshold is 

exceeded. Cignoni et al. adapt their original BDAM algorithm [15] to spherical terrains [16]. 

The BDAM algorithm is capable of managing massive textured terrain data which is stored 

in a binary tree in a separate pre-processing step.  

 

A notable exception to these approaches is proposed by Clasen and Hege [17] whose 

model does not rely on a cube as base geometry. Their implementation renders spherical 

terrains based on the GPU-Based geometry clipmap algorithm [18], which basically makes 

use of concentric rings rather than rectangles. 

 

The planetary rendering proposed in this thesis is based on the work of Vistnes [19]. The 

model reuses a small vertexbuffer to render large terrains and has therefore minimal 

memory requirements. Although the model is intended for planar terrains only, it is shown 

that it can be easily adapted for rendering spherical terrains. 

3.3 Deferred Rendering  

Deferred rendering is an approach to rendering where shading calculations for pixel 

fragments are postponed until visibility is entirely determined. The idea of a deferred 

renderer was first proposed by Deering et al. in 1988 [20]. Intermediate geometric 

information is usually stored in a geometry buffer (GBuffer). This principle is based on the 

work of Saito et al. [21]. 

Over the past few years, deferred Rendering has been getting increasingly popular. A 

comprehensive overview of deferred rendering and a description of its advantages and 

disadvantages are given by Hargreaves [22] . 
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4 Deferred Rendering of Planetary Terrains with 

Pre-computed Atmospheres  

This chapter proposes a planetary rendering model, which allows seamless transitions 

from space to the ground. The creation of the planetary surface is based on the work of 

Vistnes [19], which offers important features that allow for large scale terrain rendering like 

LOD and frustum culling capabilities. The terrain is generated procedurally and offers 

normal mapping and multi texturing to enhance realism when near the ground.  

The rendered planet itself is surrounded by an atmosphere, similar to the earthôs 

atmosphere, and accurately scatters the incident sunlight. The model is based on the work 

proposed by Bruneton and Neyret [1] and takes multiple scattering into account. To 

preserve interactive frame rates, the scattering equations are solved in a separate pre-

computation step. The results are then stored in tables that are accessed during rendering. 

It is shown how atmospheric scattering can be applied in a single post-processing step that 

works on arbitrary scenes. The model assumes a common GBuffer that stores depth, 

color, normals and reflectance values. 

 

At first the motivation for this approach is stated. After this, the requirements for this model 

on the underlying hardware and software are discussed. Furthermore the GBuffer of the 

proposed model is revealed along with basic considerations for storing and reconstructing 

geometrical information. Chapter 4.4 presents the planetary terrain model and introduces 

the reader to the implementation of key features like procedural generation of spherical 

terrains, LOD and frustum culling functionality, normal mapping and multi texturing. 

Chapter 4.5 shows how the sun is rendered. In chapter 4.6 the atmospheric scattering 

model is closely examined. It is shown how the look-up tables can be pre-computed on the 

GPU and how they can be used to apply accurate atmospheric scattering in real-time as a 

post-processing effect. Chapter 4.7 finally presents the results of the proposed model. 

 

Chapter 4.4 - 4.6 provides various code samples of the actual implementation. These are 

written in the High Level Shading Language (HLSL) and in C++. 

4.1 Motivation  

Applying atmospheric scattering as a post-processing effect has several major advantages 

over traditional forward rendering. These are: 

 

¶ Simple and straightforward integration into existing projects 

¶ Complex shader permutations are prevented 

¶ Predictable rendering costs 
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As atmospheric scattering is considered a very complex rendering effect, integration into 

an existing shader library can be cumbersome and time-consuming. In contrast, by 

applying it as a post-processing effect, integration is simple in comparison and completely 

detached from existing code. Another advantage is that the costs of applying this effect are 

completely independent from the complexity of the scene and the number of objects 

drawn. This makes the computation costs more predictable and does not add a constant 

rendering overhead to every object contained in the scene. Additionally, no specific 

GBuffer values are needed what makes this approach even more appealing and 

comfortable. 

4.2 Requirements  

Due to vertex texture fetches, dynamic branching and the high instruction count, shader 

model 3.0 is required at a minimum. In fact, shader model 4.0 is recommended as it 

introduces a geometry shader stage which enables writing to 3D textures directly by the 

GPU. Older shader models have to write every slice to a separate 2D texture and perform 

the merge on the CPU. However, these 3D textures are created in a pre-computation step 

and merging on the CPU would not affect the final performance during rendering. 

 

The model also assumes support for multiple render targets (MRT). MRT refers to the 

capability to render to multiple textures at once, while performing a single draw call. 

Support for MRT heavily influences final performance due to the high computational 

expenses of certain vertex shader, which otherwise would need to be executed multiple 

times. 

 

Memory consumption also needs to be considered as 3D textures quickly grow in size 

when increasing the resolution. For instance, the look-up tables used in the example 

implementation require slightly over 8 Mbytes. However memory consumption of the look-

up tables is highly dependent on the accuracy needed. Several ways how the table sizes 

can be reduced are discussed in chapter 5.2. 

 

The proposed implementation also makes use of the hardware depth buffer to store depth 

information. This buffer is set as an input texture for successive render stages. If this is not 

supported a separate floating point render target will be needed to store depth information. 

4.3 Geometry Buffer Layout  

As mentioned, the GBuffer used in the proposed model has a very common layout and 

does not require special components. 
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Red 8 Bit  Green 8 Bit  Blue 8 Bit  Alpha 8 Bit  Description  

ă Depth 24 Bit Ą Stencil Hardware Depth Stencil Buffer 

Color red Color green Color blue Color alpha Color Buffer 

Normal X Normal Y Normal Z Reflectance Normal & Reflectance Buffer 

Figure 4-1: Layout of the GBuffer 

 

As shown in Figure 4-1 the GBuffer is assumed to consist of two 32 bit render targets, 

which store the color and normal values and a hardware depth stencil buffer, which stores 

deph information. 

The reflectance value is contained in the alpha channel of the normal buffer and is a 

common part of most GBuffers. Basically this value represents ‌ of Equation 2-13. 

However the proposed model stores the full term 
‌(ὼ0)

“
 in the buffer.  

4.3.1 Linear Depth  

Perspective projection of a 3D scene onto a 2D image involves a linear part and a non-

linear part. The linear part is the multiplication of a vertex by the projection matrix, which 

stores the original ᾀ component of the vertex in the ύ component. After this, the resulting 

components of the vertex (ὼ,ώ and ᾀ) are divided by the ύ component (the original value of 

ᾀ before multiplication by the projection matrix). This represents the non-linear part and 

happens automatically between the vertex shader stage and the pixel shader stage. This 

operation is often referred to as the homogeneous divide or the perspective divide and is a 

non-linear function which enables the hardwareôs depth-buffering algorithm by mapping the 

resulting ᾀ component to the range [0,1] (in the case of Direct3D).  

 

 

Figure 4-2: View Frustum and its near and far plane 

 

 

The linear and non-linear parts represent a function Ὣ(ᾀ)  that maps a depth value between 

the far plane Ὢ and the near plane ὲ (Figure 4-2) to the range [0,1] and is given as follows: 
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Ὣᾀ=  
Ὢ

Ὢ ὲ

ὲὪ 

Ὢ ὲᾀ
 Equation 4-1 

 

Although the function described in Equation 4-1 is strictly increasing and order preserving, 

the resulting graph is non-linear. Figure 4-3 shows the resulting non-linear depth values for 

varying near planes. 

 

 

Figure 4-3: Resulting non-linear depth for varying near planes 

 

As shown, the majority of the resulting depth range is consumed by depth values close to 

the near plane. This can lead to precision problems when the ratio between the near and 

far plane increases.  

 

It is very common in deferred rendering, to reconstruct the position of a pixel by making 

use of its depth stored in the depth buffer. The accuracy of reconstruction is however 

dependent on the precision of these depth values. In order to allow visualization of a planet 

on many scales (at the ground or thousands of kilometers away), the ratio between the 

near and far plane has to be set accordingly.  

4.3.1.1 Storing Linear Depth  

In order to solve the inevitable precision problems described in the previous chapter, depth 

is stored linearly, which means that the accuracy of depth values is not dependent on its 

distance to the near plane. Linear depth distribution can be obtained by multiplying the ᾀ 
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component of the vertex by the ύ component and the reciprocal of the far plane Ὢ before 

the perspective divide. This finally results in a function Ὣᴂᾀ as follows: 

 

Ὣᴂᾀ=  
ᾀ ὲ

Ὢ ὲ
 Equation 4-2 

 

Solving Equation 4-2 leads to a linear distribution of the resulting depth values and hence 

to constant precision over the whole range. 

4.3.1.2 Reconstructing the  Original  Position  

The original position of a fragment in the depth buffer can be reconstructed easily when the 

corresponding positions on the near and far plane are known. As the depth values are 

distributed equally between the near and far plane, the position can be recreated by 

solving Equation 4-3. 

 

ὕὶὭὫὭὲὥὰὖέίὭὸὭέὲ= ὅὥάὩὶὥὖέίὭὸὭέὲ+ ὅὥάὩὶὥὝέὔὩὥὶ+  

                                         ὈὩὴὸὬὠὥὰzὔὩὥὶὝέὊὥὶ 

 

ὅὥάὩὶὥὝέὔὩὥὶ= ὔὩὥὶὖὰὥὲὩὖέίὭὸὭέὲ ὅὥάὩὶὥὖέίὭὸὭέὲ 

ὔὩὥὶὝέὊὥὶ= ὊὥὶὖὰὥὲὩὖέίὭὸὭέὲ ὔὩὥὶὖὰὥὲὩὖέίὭὸὭέὲ 

Equation 4-3 

 

The position is obtained by offsetting the camera position by the distance to the near plane 

and a linear interpolation between the near and far plane according to the depth value 

stored in the depth buffer. Figure 4-4 shows an example of reconstructing the position of a 

point having a depth value of 0.45. 

 

 

 

Figure 4-4: Reconstructing the position of a point having depth value 0.45 by interpolating between 

the near and far plane 
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4.3.2 Encoding of Surface Normals  

A common technique used in deferred renderers is to store only two components of the 

normal in the GBuffer. As the normal has unit length the third component can be 

reconstructed. In this case memory consumption is traded for computational costs. This 

however yields to slight errors [23].  

 

The simplest approach to encoding assumes that only normals, which face in the direction 

of the camera, are seen. By storing the ὼ and ώ components of the normal in view space 

the ᾀ component can be reconstructed by making use of the fact that the following equation 

is true for normalized vectors ὼ² + ώ² + ᾀ² = 1. Thus, the ᾀ component is retrieved by 

solving this equation for ᾀ . The appropriate sign of the ᾀ component is then assumed due 

to the fact that visible normals can only point towards the camera. However, normals can 

also point away from the camera due to perspective projection [24]. In this case the 

decoding fails and can produce errors, which are subtle and therefore hard to detect. A 

good and fast alternative to this is presented by Mittring [25], which even offers better 

precision. 

 

However, in favor of simplicity, the proposed implementation stores all three components 

of the normal in the buffer. Usually the components of the normal vector are stored in 16 bit 

channels. Storing these in 8 bit channels produces quantization errors, which are most 

apparent when specular lighting is involved. In the presented approach 8 bits are sufficient, 

as specular lighting is ignored and the resulting errors are hardly notable. 
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4.4 Planetary Terrain  Rendering  

The following chapters give a comprehensive overview of the key concepts used to render 

the planetary terrain. As already mentioned, the model is based on a terrain rendering 

algorithm originally proposed by Vistnes [19]. 

 

At first the basic algorithm proposed by Vistnes [19] is presented. Chapter 4.4.2 then 

shows how this model can be adapted to allow rendering of procedural planetary terrains, 

while preserving its LOD functionality. Furthermore, the algorithms behind normal mapping 

and multi texturing are revealed and it is shown how the final values are rendered into the 

GBuffer. Chapter 4.4.4 finally describes how frustum culling can be implemented efficiently 

and discusses the resulting performance gain. 

 

The full source code of the planetary terrain shader is provided in Appendix A. 

4.4.1 Basic Algorithm  

This chapter serves as a brief introduction to the basics of the planar terrain rendering 

algorithm originally proposed by Vistnes [19].  

 

The terrain algorithm is based on a quad-tree approach to implement its LOD functionality. 

Imagine a simple block of triangles that lies in the ὼ, ᾀ plane of a coordinate system. This 

block can be recursively divided into a number of smaller quadratic blocks. Each division 

results in four children, which are four times smaller than the parent. Each block is 

represented by a fixed quantity of vertices. The number of vertices along an edge of the 

quadratic block describes the ὄὰέὧὯίὭᾀὩ of the quad-tree. Parts of the plane that are 

divided more often have therefore a higher triangle density. The number of divisions 

represents the LOD of this part of the terrain. 

 

 

 

Figure 4-5: Divided blocks with different LOD 
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Figure 4-5 shows a plane with different LOD. The red outlined blocks are the result of the 

first division. The bottom, right block then got divided into four child blocks (green outline). 

Finally the bottom, right block of these children got divided again into four additional 

children (blue outline). As each block contains an equal number of triangles, the bottom 

right corner has the highest density of triangles. 

 

The primary advantage of this model is the very low memory requirements when 

implemented with shaders. In this case itôs possible to render an unlimitedly sized terrain 

by using a very small vertex buffer, which represents a single block. 

4.4.1.1 Calculating the position  

The vertices of each block originally form a planar quadratic block that lies flat on the ὼ, ᾀ 

plane. The values of the vertices along the ὼ and ᾀ axis range from 0 to 1. The position of a 

vertex within this coordinate system is from now on referred to as ὖέίὄὰέὧὯ. 

 

The terrain is composed of many different blocks with different scales, as described above. 

Therefore the vertices of the block need to be positioned on the right location within this 

particular terrain. To accomplish this, the blocks are transformed into a new coordinate 

system, which is from now on refered to as the όὺύ coordinate system. At first the ό and ὺ 

coordinates are calculated. These ό and ὺ coordinates can be determined by calculating 

three values: a ίὭᾀὩ, a όὓὭὲ and a ὺὓὭὲ value. ίὭᾀὩ, as the name implies, describes the 

size of a block and thus the length of an edge along the ό and ὺ axis. The όὓὭὲ and ὺὓὭὲ 

values describe the offset of the block from the origin along the ό and ὺ axis respectively. 

The values of the ό and ὺ axis range from 0 to 1. The positioning of a block on the ό and ὺ 

axis is shown in Figure 4-6. The highlighted block for example has a ίὭᾀὩ of 0.25, a όὓὭὲ 

value of 0.5 and a ὺὓὭὲ value of 0.25.  

 

 

 

Figure 4-6: Positioning of a block within the όὺύ coordinate system using bias values and a size 
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The ύ axis describes the elevation of the terrain. The original algorithm uses a height field 

texture to elevate vertices. Note that the όὺ coordinates of the vertices range from 0 to 1 

and so they can be used as texture coordinates to obtain an elevation value from a height 

map. 

 

The όὺύ coordinates of a vertex can therefore be calculated as described in Equation 4-4. 

 

 

 

ὴέίὟὠὡ .ό= ὴέίὄὰέὧὯ.ὼz ίὭᾀὩ+ όὓὭὲ 

ὴέίὟὠὡ .ὺ= ὴέίὄὰέὧὯ.ᾀz ίὭᾀὩ+ ὺὓὭὲ 

ὴέίὟὠὡ .ύ= ὩὰὩὺὥὸὭέὲ 

Equation 4-4 

 

ὴέίὟὠὡ describes the position of the vertex in the όὺύ coordinate system and ὩὰὩὺὥὸὭέὲ 

the elevation of the vertex along the ύ axis, as described above. 

 

After obtaining a position within the όὺύ coordinate system, the vertices are transformed to 

world space. This is usually done by a scaling matrix that scales the vertices to the desired 

dimension of the terrain in world space.   

 

Some of the algorithms in the following chapters need to calculate certain positions on a 

single block. These positions are often described relative to the όὺύ coordinate system 

with the aid of certain values. These values are shown in Figure 4-7 and given as 

described in Equation 4-5.  

 

 

 
όὓὭὨ=

ίὭᾀὩ

2
+ όὓὭὲ 

 

όὓὥὼ= ίὭᾀὩ+ όὓὭὲ 

 

ὺὓὭὨ=
ίὭᾀὩ

2
+ ὺὓὭὲ 

ὺὓὥὼ= ίὭᾀὩ+ ὺὓὭὲ 

Equation 4-5 

 

 

 

Figure 4-7: Important values of a block on the ό and ὺ axis used by successive algorithms 
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4.4.1.2 Implementing Level of Detail  Functionality  

When a block gets divided into four children, the new values for ίὭᾀὩ, όὓὭὲ and ὺὓὭὲ are 

calculated for each children. The values are given as described in Equation 4-6. 

 

 

 
ίὭᾀὩὅὬὭὰὨ1,ὅὬὭὰὨ2,ὅὬὭὰὨ3,ὅὬὭὰὨ4 =

ίὭᾀὩ

2
 

όὓὭὲὅὬὭὰὨ1 = όὓὭὲ, ὺὓὭὲὅὬὭὰὨ1 =  ὺὓὭὲ 

όὓὭὲὅὬὭὰὨ2 = όὓὭὨ, ὺὓὭὲὅὬὭὰὨ2 =  ὺὓὭὲ 

όὓὭὲὅὬὭὰὨ3 = όὓὭὲ, ὺὓὭὲὅὬὭὰὨ3 =  ὺὓὭὨ 

όὓὭὲὅὬὭὰὨ4 = όὓὭὨ, ὺὓὭὲὅὬὭὰὨ4 =  ὺὓὭὨ 

Equation 4-6 

 

 

 

The actual decision, if a block is divided into four children, is based on the simple test 

shown in Equation 4-7 [19]. 

 

 ὰ

Ὠ
< ὅ 

Equation 4-7 

 

Where the value ὰ denotes the distance from the center of the block to the camera, Ὠ the 

world space extend of a single triangle and ὅ an adjustable constant that controls the 

quality and therefore the number of divisions of the rendered terrain. If the test is true, the 

current block will be divided into four children. If it fails, the current block will be rendered. 

This evaluation is an adaption of an idea introduced by Röttger et al. [26]. Note that a 

higher value for ὅ results in more divisions and therefore in a higher triangle density near 

the camera. The maximum number of divisions is usually limited by a threshold value. 

4.4.1.3 Avoiding Cracks  

A common drawback of most terrains algorithms which offer LOD functionality is that 

cracks appear at the transitions of blocks with different LOD. A simple solution to this 

problem is proposed by Ulrich [27]. In his model, the vertex buffer of the block is extended 

by so called skirt vertices around the border of the block. Then the original vertices (inside 

the skirt) are initialized with a ώ position of 1 and the skirt vertices with a ώ position of 1. 

Note that the ώ component of each vertex was unused till now, as the elevation is applied 

in the όὺύ coordinate system. The assignment of ὴέίὟὠὡ .ύ in Equation 4-4 is then 

changed to a multiplication as shown in Equation 4-8. 

 

ὴέίὟὠὡ .ύ= ὴέίὄὰέὧὯ.ώz ὩὰὩὺὥὸὭέὲ 
Equation 4-8 

 

This creates a vertical skirt (vertices with negative elevations) at the borders of each block 

as shown in Figure 4-8. 
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Figure 4-8: The borders of a block are extended with a vertical skirt 

 

As a result the cracks are filled by a vertical skirt. Although, this approach can cause some 

lighting problems and texture stretching near the borders of a block, the crack fillings are 

usually too small to be distracting [19]. 

4.4.2 Generating a Planetary  Terrain  

As briefly introduced in chapter 3.2 most planar terrain rendering algorithms can be 

adopted to render planetary terrains. The following sections describe how the terrain 

rendering model described in the previous chapter can be adapted to allow a creation of 

spherical terrains. 

4.4.2.1 Generating  a Spherical Terrain  out of a Cube 

Generating spherical terrains can be achieved by forming a cube out of six planar terrain 

surfaces, where the center of the cube is in the origin of the coordinate system. After this, 

the vertices of each surface are normalized, which results in a perfect unit sphere. Finally, 

each vertex is extruded by an elevation factor and the radius of the planet itself. This 

approach is an adaption of an approach proposed by OôNeil [13] and is shown in Figure 

4-9. 

 

 

Figure 4-9: The process of modeling spherical terrains: (1) forming a cube out of six planar terrains 

(2) normalizing each vertex and (3) finally extrusion by planetary radius and an elevation factor  
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In the following chapters positions are described in three different spaces.  

 

¶ In step (1) the positions on each face of the cube are described relative to one of 

the six terrains. These positions are described by the όὺύ coordinate system, 

which was introduced in chapter 4.4.1.1. An important change however is the fact, 

that the elevation value is not applied in the όὺύ coordinate system anymore. 

Instead this is done in step (3). 

¶ The normalized positions of step (2) are described as positions on the unit sphere. 

¶ The resulting positions after step (3) are the positions in world space. 

 

Note that the position on the unit sphere can be retrieved by normalizing the position in 

world space. 

 

In the proposed implementation, the three steps shown in Figure 4-9 are carried out in a 

vertex shader as shown in Listing 4-1. 

 

// input -  posBlock: position within the vertex buffer of the block  

// output: position after transformation to uvw space  

float3  getUVW( in  float3  posBlock)  

{  

  float3  posUVW; 

  posUVW.x = posBlock.x * g_sizeBlock + g_ uMin ;  

  posUVW.y = 0.0f ;  

  posUVW.z = p osBlock.z * g_sizeBlock + g_vMin ;  

     

  return  posUVW; 

}  

 

...  

 

// transform position to uvw space  

float3  posUVW = getUVW(input.pos);  

     

// transform to cube and normalize to obtain position on unit sphere  

float3  posCube = mul ( float4 (posUVW, 1.0f ), g_cube ).xyz;  

float3  posUnitSphere = normalize (posCube);  

      

// extrude by planetary radius and an elevation factor to obtain  

// position in world space  

float  elevation = getElevation(posUnitSphere) * input.pos.y;  

float3  pos World  = posUnitSphere * (g_Rg + elevation);  

Listing 4-1: Calculating planetary position in vertex shader 

 

At first the όὺύ coordinates of the current vertex is obtained. This basically positions the 

block within the planar terrain. By multiplying these blocks with a certain matrix they are 

rotated and translated to form a cube. The resulting positions on the cube are then 

normalized to obtain the position on the unit sphere. This position is then scaled again by 
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the radius of the planet ὙὫ and an elevation factor. The called function to obtain an 

elevation factor for a given position is explained in further detail in chapter 4.4.2.3. Note 

that the skirt vertices are also extruded by the planetary radius but get a negative elevation 

to fill the cracks.  

4.4.2.2 Adapting th e Level of Detail Functionality  

LOD functionality needs to be adapted due to the fact that the blocks of the terrain are now 

curved. For this the calculations of Ὠ, the world space extend of a single triangle, need to 

be adjusted to approximate the arc length of a block in world space.  

 

This approximation is done by transforming the positions ὖ0, ὖ1 and ὖ2 as depicted in 

Figure 4-10 from the όὺύ coordinate system into world space.  

 

 

Figure 4-10: Approximating the arc length of a block 

 

This results in the corresponding points with respect to world space: ὖ0ὡέὶὰὨ, ὖ1ὡέὶὰὨ and 

ὖ2ὡέὶὰὨ. The final world space extend Ὠ of a single triangle is then given as shown in 

Equation 4-9. 

 

 

 

ὥὶὧὒὩὲὫὸὬ= ὰὩὲὫὸὬὖ1ὡέὶὰὨ ὖ0ὡέὶὰὨ +  

                           ὰὩὲὫὸὬ(ὖ2ὡέὶὰὨ ὖ0ὡέὶὰὨ) 

 

Ὠ=
ὥὶὧὒὩὲὫὸὬ

ὄὰέὧὯίὭᾀὩ 1
 

Equation 4-9 

 

 

Where ὰὩὲὫὸὬ calculates the length of the given vector. 

 

Note that, due to performance reasons, the actual elevation of the vertex is not taken into 

account when calculating the arc length. The planet is thus treated as a perfect sphere. 

However, this is negligible as the arc length is approximated anyway. 
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4.4.2.3 Generatin g Elevations using Perlin Noise  

As the planet is visualized on many different scales, a function is needed that allows 

generating rough mountain ranges that are visible from far away as well as very fine 

bumps when the camera is near the ground. 

 

It is common to elevate terrains using a height map texture. The drawback of this approach 

is that a height map is limited in its resolution. In order to preserve details when near the 

ground (and prevent an oversampling of the texture) a height map with an unreasonably 

high resolution would be needed. To overcome this problem the planetary surface is 

elevated procedurally by a function that allows retrieving both: a rough surface pattern as 

well as fine details.  

 

The noise function proposed by Perlin [28] is one of the most important noise functions to 

create procedural content. The function offers controlled randomness, which means, that 

the same input always produces the same output. What makes it particularly useful for 

rendering large scale terrains is the fact, that it outputs smoothed noise, rather than 

discrete noise for values that are continuous (for example texture coordinates). Increasing 

and decreasing the inputted value range looks like zooming in and out of the resulting 

noise. It doesnôt matter how far you zoom in ï the outputted noise is always perfectly 

smooth.  

 

This allows generating a rough, low frequency noise by supplying values in a lower range 

and high frequency details by supplying values in higher ranges. The resulting values can 

also be summed up to generate a so called fractal sum as shown in Figure 4-11. 

 

 

 

Figure 4-11: Fractal sum of two 2D Perlin noise functions with different ranges for ὼ and ώ 

 

The dimension of a Perlin noise function determines for how many dimensions smoothed 

values can be generated. For generating the planetary terrain, a 3D Perlin noise function is 
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used to generate a smooth and random surface elevation. Although the Perlin noise 

function is considered a fast algorithm for the resulting quality, it is still quite expensive.  

 

In the proposed model an elevation in the range [0,4] is generated for each vertex by 

combining the results of two Perlin noise functions. Listing 4-2 shows a function which 

returns a random but perfectly smooth elevation value depending on the position on the 

unit sphere. 

 

static c onst  float  g_lowFrequencyHeight = 3.25f ;  

static const  float  g_highFrequencyHeight = 0.75f ;  

static const  float  g_lowFrequencyScale = 400.0f ;  

static const  float  g_highFrequencyScale = 2500.0f ;  

 

...  

 

// input -  posUnitSphere: position on the unit sphere  

// output: elevation value generated by fractal sum  

//         of high and low frequency Perlin noise  

float  getElevation( in f loat3  posUnitSphere)  

{  

  float  noiseHeight = 0;  

 

  // low frequency noise  

  float  n = Perlin(posUnitSphere * g_lowFrequencyScale);  

  n = shift(n);  

  noiseHeight += n * g_lowFrequencyHeight;  

   

  // high frequency noise  

  n = Perlin(posUnitSphere * g_highFrequencyScale);  

  n = shift(n);  

  noiseHeight += n * g_highFrequencyHeight;  

 

  return  noiseHeight;  

}  

Listing 4-2: Generating an elevation value 

 

The Perlin noise function returns a smooth random value between 1 and 1. This value is 

then shifted to the range [0,1] and scaled by a constant that determines the maximum 

elevation for this frequency. This is done two times to generate low and high frequency 

noise. Note that the second time, the input value is scaled by a considerably greater value 

to obtain high frequency noise. Then the fractal sum is calculated by combining high and 

low frequency noise. 

 

Figure 4-12 shows the results of the noise function and demonstrates the effectiveness of 

combining high and low frequency noise. The importance of high frequency noise becomes 

more apparent when approaching the planetary surface. 
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Figure 4-12: Importance of high frequency noise 

(top row) using only low frequency noise  

(bottom row) combining low and high frequency noise 

 

4.4.2.4 Texturing  

A problem with spherical terrains is the fact that a sphere cannot be textured by a 

rectangular image without any distortions. This problem is a direct result of the so called 

hairy ball theorem [29]. Fortunately, the original texture coordinates of the planar terrain (as 

described in chapter 4.4.1.1) offer minimal distortions (like stretching at the center of each 

face and seams at edges between each terrain) and can be reused. 

 

Note that the coordinates in terrain space range from 0 to 1 and would stretch a single 

texture over a whole terrain, so these coordinates are scaled accordingly to repeat the 

texture several times. This however yields to visible repeating texture patterns on distant 

terrains. In order to reduce these patterns the scaling of these texture coordinates are a 

function of the surfaceôs distance to the camera as proposed by Rosa [30]. 

 

// controls which distance is considered as Near or Far  

static c onst  float  g_textureDistNear = 100 ;  

static const  float  g_textureDistFar = 1000 ;  

// scale factors for textures  

static const  float  g_grassTexScaleNear = 600.0f ;  

static const  float  g_grassTexScaleFar = 8.0f ;  

static const  float  g_stoneTexScaleNear = 600.0f ;  

static const  float  g_stoneTexScaleFar = 32.0f ;  

// value between 0 and 1 that controls the height  

// where the stone texture starts to blend in  

static const  float  g_stoneColorStart = 0.4f ;  

// factor that controls the softness of  

// transition from grass to stone texture  


