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1. Introduction
We present an algorithm for extracting the six viewing frustum planes directly from the combined world, view, and
projection matrices. The algorithm is fast, accurate, and general. It allows one to quickly determine the frustum
planes in camera space, world space, or object space.

The paper is divided into two main chapters. The first chapter "Plane Extraction in Direct3D" shows how to extract
the viewing frustum planes in Direct3D, and the second chapter "Plane Extraction in OpenGL" shows how to do the
same in OpenGL.

In addition, there are two appendices. Appendix A reviews some of the maths behind plane equations, and Appendix
B contains sample implementations of the plane extraction algorithm for both, Direct3D and OpenGL.

We hope you enjoy this short paper.
Gil Gribb

Klaus Hartmann
06/15/2001

2. Plane Extraction in Direct3D
We start off by extracting the frustum planes from the projection matrix only. That is, the world and view matrices
are both identity matrices. This means that the camera is located at the origin of the world coordinate system, and we
are looking along the positive z-axis.

Let ( )1x y z w= =v  be a vertex and let ( )ijm=M  be a 4 4× projection matrix. Transforming the vertex

v with the matrix M results in the transformed vertex ( )' ' ' ' 'x y z w=v . This can be written as:
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where •  denotes the dot product, and ( )1 2 3 4j j j j jcol m m m m=  denotes the vector represented by the thj

column of matrix M . For example, 2col•v  denotes the dot product of v with the vector represented by the 2nd

column of matrix M .
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After this transformation, the vertex 'v is in homogeneous clipping space. In this space the viewing frustum actually
is an axis-aligned box whose size is API-specific. If vertex 'v is inside this box, then the untransformed vertex v is
inside the 'untransformed' viewing frustum. Using Direct3D, the vertex 'v is inside the box, if the following
inequalities are all true for the components of 'v :
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There are a couple conclusions we can draw from these inequalities. They are listed in the following table.

If ' 'w x− < then 'x  is in the inside-halfspace of the left clipping plane
If ' 'x w< then 'x  is in the inside-halfspace of the right clipping plane
If ' 'w y− < then 'y  is in the inside-halfspace of the bottom clipping plane
If ' 'y w< then 'y  is in the inside-halfspace of the top clipping plane
If 0 'z< then 'z  is in the inside-halfspace of the near clipping plane
If ' 'z w< then 'z  is in the inside-halfspace of the far clipping plane

Now suppose that we wanted to test, if 'x  is in the inside-halfspace of the left clipping plane. This is the case, if the
following inequality is true:

' 'w x− <

Using the information from the beginning of this chapter, we can rewrite this inequality as:

4 1( ) ( )col col− • < •v v

This in turn is equal to:

4 10 ( ) ( )col col< • + •v v

And finally:

4 10 ( )col col< • +v

This already represents the plane equation for the left clipping plane of the 'untransformed' viewing frustum:

14 11 24 21 34 31 44 41( ) ( ) ( ) ( ) 0x m m y m m z m m w m m+ + + + + + + =

Since 1w = , we can simplify this as follows:

14 11 24 21 34 31 44 41( ) ( ) ( ) ( ) 0x m m y m m z m m m m+ + + + + + + =

This gives a standard plane equation:
0ax by cz d+ + + = ,

where

14 11 24 21 34 31 44 41, , ,a m m b m m c m m d m m= + = + = + = +

We have now shown that the left clipping plane of the viewing frustum can be directly extracted from the projection
matrix. It is important to note, that the resulting plane equation is not normalized (i.e., the plane’s normal vector is



not a unit vector), and that the normal vector is pointing to the inside halfspace. This means, that
0 ax by cz d< + + + , if the vertex v is in the inside halfspace of the left clipping plane.

We can now repeat the above steps for the other inequalities to determine the plane equations for the remaining
clipping planes.
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2.1 Supporting Non-Identity World and View Matrices

Until now we have assumed that both, the world and the view matrix are identity matrices. However, the goal
obviously is to make the algorithm work for an arbitrary view. This is, in fact, so easy that it’s almost unbelievable.
If you think about it for a moment then you’ll immediately understand it, and that’s why we are not going to explain
this in any great detail. All we are giving to you is this:

1. If the matrix M is equal to the projection matrix P (i.e., =M P ), then the algorithm gives the clipping planes
in view space (i.e., camera space).



2. If the matrix M is equal to the combined view and projection matrices, then the algorithm gives the clipping
planes in world space (i.e., = ⋅M V P , where V is the view matrix, and P is the projection matrix).

3. If the matrix M is equal to the combined world, view, and projection matrices, then the algorithm gives the
clipping planes in object space (i.e., = ⋅ ⋅M W V P , where W is the world matrix, V is the view matrix, and
P is the projection matrix).

4. and so on...

3. Plane Extraction in OpenGL
We start off by extracting the frustum planes from the projection matrix only. That is, the modelview matrix is an
identity matrix. This means that the camera is located at the origin of the world coordinate system, and we are
looking along the positive z-axis.

Let ( )1 Tx y z w= =v  be a vertex and let ( )ijm=M  be a 4 4× projection matrix. Transforming the

vertex v with the matrix M results in the transformed vertex ( )' ' ' ' ' Tx y z w=v . This can be written as:
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where •  denotes the dot product, and ( )1 2 3 4i i i i irow m m m m=  denotes the vector represented by the thi
row of matrix M . For example, 2row•v  denotes the dot product of v with the vector represented by the 2nd row
of matrix M .

After this transformation, the vertex 'v is in homogeneous clipping space. In this space the viewing frustum actually
is an axis-aligned box whose size is API-specific. If vertex 'v is inside this box, then the untransformed vertex v is
inside the 'untransformed' viewing frustum. Using OpenGL, the vertex 'v is inside the box, if the following
inequalities are all true for the components of 'v :
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There are a couple conclusions we can draw from these inequalities. They are listed in the following table.

If ' 'w x− < then 'x  is in the inside-halfspace of the left clipping plane
If ' 'x w< then 'x  is in the inside-halfspace of the right clipping plane
If ' 'w y− < then 'y  is in the inside-halfspace of the bottom clipping plane
If ' 'y w< then 'y  is in the inside-halfspace of the top clipping plane
If ' 'w z− < then 'z  is in the inside-halfspace of the near clipping plane
If ' 'z w< then 'z  is in the inside-halfspace of the far clipping plane



Now suppose that we wanted to test, if 'x  is in the inside-halfspace of the left clipping plane. This is the case, if the
following inequality is true:

' 'w x− <

Using the information from the beginning of this chapter, we can rewrite this inequality as:

4 1( ) ( )row row− • < •v v

This in turn is equal to:

4 10 ( ) ( )row row< • + •v v

And finally:

4 10 ( )row row< • +v

This already represents the plane equation for the left clipping plane of the 'untransformed' viewing frustum:

41 11 42 12 43 13 44 14( ) ( ) ( ) ( ) 0x m m y m m z m m w m m+ + + + + + + =

Since 1w = , we can simplify this as follows:

41 11 42 12 43 13 44 14( ) ( ) ( ) ( ) 0x m m y m m z m m m m+ + + + + + + =

This gives a standard plane equation:
0ax by cz d+ + + = ,

where

41 11 42 12 43 13 44 14, , ,a m m b m m c m m d m m= + = + = + = +

We have now shown that the left clipping plane of the viewing frustum can be directly extracted from the projection
matrix. It is important to note, that the resulting plane equation is not normalized (i.e., the plane’s normal vector is
not a unit vector), and that the normal vector is pointing to the inside halfspace. This means, that
0 ax by cz d< + + + , if the vertex v is in the inside halfspace of the left clipping plane.

We can now repeat the above steps for the other inequalities to determine the plane equations for the remaining
clipping planes.

Clipping plane Inequality Coefficients for the plane equation
left

4

1

1

1

4

4

' '
( )

0 ( ) ( )
0 ( )

w x
row row

row row
row row

− <
− • < •

< • + •
< • +

v v
v v

v

41 11

42 12

43 13

44 14

a m m
b m m
c m m
d m m

= +
= +
= +
= +

right

1 4

4

4

1

1

' '

0 ( ) (
( )

)
0

x w

row ro

row row
row ro

w
w

<
• < •

< • − •
< • −

v v
v v

v

41 11

42 12

43 13

44 14

a m m
b m m
c m m
d m m

= −
= −
= −
= −



bottom

4

2

2

2

4

4

' '
( )

0 ( ) ( )
0 ( )

w y
row row

row row
row row

− <
− • < •

< • + •
< • +

v v
v v

v

41 21

42 22

43 23

44 24

a m m
b m m
c m m
d m m

= +
= +
= +
= +

top

2 4

4

4

2

2

' '

0 ( ) (
( )

)
0

y w

row ro

row row
row ro

w
w

<
• < •

< • − •
< • −

v v
v v

v

41 21

42 22

43 23

44 24

a m m
b m m
c m m
d m m

= −
= −
= −
= −

near

4

3

3

3

4

4

' '
( )

0 ( ) ( )
0 ( )

w z
row row

row row
row row

− <
− • < •

< • + •
< • +

v v
v v

v

41 31

42 32

43 33

44 34

a m m
b m m
c m m
d m m

= +
= +
= +
= +

far

3 4

4

4

3

3

' '

0 ( ) (
( )

)
0

z w

row ro

row row
row ro

w
w

<
• < •

< • − •
< • −

v v
v v

v

41 31

42 32

43 33

44 34

a m m
b m m
c m m
d m m

= −
= −
= −
= −

3.1 Supporting a Non-Identity Modelview Matrix

Until now we have assumed that the modelview matrix is an identity matrices. However, the goal obviously is to
make the algorithm work for an arbitrary view. This is, in fact, so easy that it’s almost unbelievable. If you think
about it for a moment then you’ll immediately understand it, and that’s why we are not going to explain this in any
great detail. All we are giving to you is this:

1. If the matrix M is equal to the projection matrix P (i.e., =M P ), then the algorithm gives the clipping planes
in view space (i.e., camera space).

2. If the matrix M is equal to the combined projection and modelview matrices, then the algorithm gives the
clipping planes in model space (i.e., ⋅ =V P M , where V is the modelview matrix, and P is the projection
matrix).

Appendix A – Plane Equations

Given a fixed pointp and a non-zero normal vector n , a plane is defined as the set of all points ( , , )x y z=x , such
that ( ) 0• − =n x p .

In English that means, that the vector from p to any point x is orthogonal (perpendicular) to the plane’s normal
vector n , if the point x is on the plane. Remember that the dot product of two vectors is zero, if the angle between
those two vectors is 90 degrees.

We are now going to bring the plane equation ( ) 0• − =n x p  into another form:



( ) 0• − =n x p
Is equal to:

( ) ( ) 0• − • =n x n p

If ( )a b c=n , then we can rewrite the above as:

( ) 0ax by cz+ + − • =n p

The term ( )− •n p is constant and we now define that : ( )d = − •n p . Thus the plane equation becomes:

0ax by cz d+ + + =

It should be noted, that many people prefer to use the form ax by cz d+ + = . In this case, the constant d is
defined as : ( )d = •n p .

For use in a computer language, we can store such a plane equation in a simple structure.

struct Plane
{
    float   a, b, c, d;
};

A.1 – Halfspaces

A plane cuts three-dimensional space into two separate parts. These parts are called halfspaces. The halfspace the
plane’s normals vector points into is called the positive halfspace, and the other halfspace is called the negative
halfspace.

A.2 – Normalizing the Plane Equation

Normalizing a plane equation 0ax by cz d+ + + =  means to change the plane equation, such that the normal

vector ( )a b c=n  becomes a unit vector (i.e., 1=n ). All we need to do to normalize a vector is to divide
each of its components by the magnitude of the vector. However, in order to normalize a plane equation it is not
enough to simply divide the coefficients , ,a b c  by the magnitude of the normal vector n . We also need to divide
the constant d  by the magnitude of the normal vector n :

( ) 0• − =n x p

First we normalize n by dividing its components by the magnitude of n :

( ) 0• − =
n x p
n

This is equal to:
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If ( )a b c=n , then we can rewrite the above as:
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Now simplify:
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So in order to normalize a plane equation, we need to divide the coefficients , ,a b c  and the constant d  by the

magnitude of the normal vector ( )a b c=n . It is useful to have a function that does this for you:

void NormalizePlane(Plane & plane)
{
    float   mag;

    mag = sqrt(plane.a * plane.a + plane.b * plane.b + plane.c * plane.c);

    plane.a = plane.a / mag;
    plane.b = plane.b / mag;
    plane.c = plane.c / mag;
    plane.d = plane.d / mag;
}

A.3 – The Signed Distance From a Plane to a Point

It is more than often necessary to compute the shortest signed distance from a given plane 0ax by cz d+ + + =  to
a point ( , , )x y z=p . As it turns out, we can simply plug the coordinates of the point p into the plane equation, and
the result is the signed distance from the plane to p . This distance, however, is not necessarily a 'true' distance.

Instead it is the signed distance in units of the magnitude of the plane’s normal vector ( )a b c=n . So in order
to obtain a 'true' distance, you need to normalize the plane equation.

float DistanceToPoint(const Plane & plane, const Point & pt)
{
    return plane.a*pt.x + plane.b*pt.y + plane.c*pt.z + plane.d;
}



If the plane equation is not normalized, then we can still get some valuable information from the 'non-true' distance
:dist

1. If 0dist < , then the point p lies in the negative halfspace.
2. If 0dist = , then the point p lies in the plane.
3. If 0dist > , then the point p lies in the positive halfspace.

This gives us another useful function that also works for non-normalized plane equations:

enum Halfspace
{
    NEGATIVE = -1
    ON_PLANE = 0,
    POSITIVE = 1,
};

Halfspace ClassifyPoint(const Plane & plane, const Point & pt)
{
    float d;

    d = plane.a*pt.x + plane.b*pt.y + plane.c*pt.z + plane.d;

    if (d < 0) return NEGATIVE;
    if (d > 0) return POSITIVE;
    return ON_PLANE;
}

Appendix B – Implementation
In the following we are going to give sample implementations of the plane extraction method for both, OpenGL and
Direct3D.

Note, that the normal vectors of the resulting planes are pointing to the inside of the viewing frustum. If you prefer
planes where the normal vectors are pointing to the outside, then all you need to do is to negate the coefficients

, ,a b c  and the constant d  of each plane equation.

B.1 Plane Extraction for OpenGL

struct Matrix4x4
{
    // The elements of the 4x4 matrix are stored in
    // column-major order (see "OpenGL Programming Guide",
    // 3rd edition, pp 106, glLoadMatrix).
    float   _11, _21, _31, _41;
    float   _12, _22, _32, _42;
    float   _13, _23, _33, _43;
    float   _14, _24, _34, _44;
};

void ExtractPlanesGL(
    Plane * p_planes,
    const Matrix4x4 & comboMatrix,
    bool normalize)
{
    // Left clipping plane



    p_planes[0].a = comboMatrix._41 + comboMatrix._11;
    p_planes[0].b = comboMatrix._42 + comboMatrix._12;
    p_planes[0].c = comboMatrix._43 + comboMatrix._13;
    p_planes[0].d = comboMatrix._44 + comboMatrix._14;

    // Right clipping plane
    p_planes[1].a = comboMatrix._41 - comboMatrix._11;
    p_planes[1].b = comboMatrix._42 - comboMatrix._12;
    p_planes[1].c = comboMatrix._43 - comboMatrix._13;
    p_planes[1].d = comboMatrix._44 - comboMatrix._14;

    // Top clipping plane
    p_planes[2].a = comboMatrix._41 - comboMatrix._21;
    p_planes[2].b = comboMatrix._42 - comboMatrix._22;
    p_planes[2].c = comboMatrix._43 - comboMatrix._23;
    p_planes[2].d = comboMatrix._44 - comboMatrix._24;

    // Bottom clipping plane
    p_planes[3].a = comboMatrix._41 + comboMatrix._21;
    p_planes[3].b = comboMatrix._42 + comboMatrix._22;
    p_planes[3].c = comboMatrix._43 + comboMatrix._23;
    p_planes[3].d = comboMatrix._44 + comboMatrix._24;

    // Near clipping plane
    p_planes[4].a = comboMatrix._41 + comboMatrix._31;
    p_planes[4].b = comboMatrix._42 + comboMatrix._32;
    p_planes[4].c = comboMatrix._43 + comboMatrix._33;
    p_planes[4].d = comboMatrix._44 + comboMatrix._34;

    // Far clipping plane
    p_planes[5].a = comboMatrix._41 - comboMatrix._31;
    p_planes[5].b = comboMatrix._42 - comboMatrix._32;
    p_planes[5].c = comboMatrix._43 - comboMatrix._33;
    p_planes[5].d = comboMatrix._44 - comboMatrix._34;

    // Normalize the plane equations, if requested
    if (normalize == true)
    {
        NormalizePlane(p_planes[0]);
        NormalizePlane(p_planes[1]);
        NormalizePlane(p_planes[2]);
        NormalizePlane(p_planes[3]);
        NormalizePlane(p_planes[4]);
        NormalizePlane(p_planes[5]);
    }
}

B.2 Plane Extraction for Direct3D

struct Matrix4x4
{
    // The elements of the 4x4 matrix are stored in
    // row-major order.
    float   _11, _12, _13, _14;
    float   _21, _22, _23, _24;
    float   _31, _32, _33, _34;
    float   _41, _42, _43, _44;
};



void ExtractPlanesD3D(
    Plane * p_planes,
    const Matrix4x4 & comboMatrix,
    bool normalize)
{
    // Left clipping plane
    p_planes[0].a = comboMatrix._14 + comboMatrix._11;
    p_planes[0].b = comboMatrix._24 + comboMatrix._21;
    p_planes[0].c = comboMatrix._34 + comboMatrix._31;
    p_planes[0].d = comboMatrix._44 + comboMatrix._41;

    // Right clipping plane
    p_planes[1].a = comboMatrix._14 - comboMatrix._11;
    p_planes[1].b = comboMatrix._24 - comboMatrix._21;
    p_planes[1].c = comboMatrix._34 - comboMatrix._31;
    p_planes[1].d = comboMatrix._44 - comboMatrix._41;

    // Top clipping plane
    p_planes[2].a = comboMatrix._14 - comboMatrix._12;
    p_planes[2].b = comboMatrix._24 - comboMatrix._22;
    p_planes[2].c = comboMatrix._34 - comboMatrix._32;
    p_planes[2].d = comboMatrix._44 - comboMatrix._42;

    // Bottom clipping plane
    p_planes[3].a = comboMatrix._14 + comboMatrix._12;
    p_planes[3].b = comboMatrix._24 + comboMatrix._22;
    p_planes[3].c = comboMatrix._34 + comboMatrix._32;
    p_planes[3].d = comboMatrix._44 + comboMatrix._42;

    // Near clipping plane
    p_planes[4].a = comboMatrix._13;
    p_planes[4].b = comboMatrix._23;
    p_planes[4].c = comboMatrix._33;
    p_planes[4].d = comboMatrix._43;

    // Far clipping plane
    p_planes[5].a = comboMatrix._14 - comboMatrix._13;
    p_planes[5].b = comboMatrix._24 - comboMatrix._23;
    p_planes[5].c = comboMatrix._34 - comboMatrix._33;
    p_planes[5].d = comboMatrix._44 - comboMatrix._43;

    // Normalize the plane equations, if requested
    if (normalize == true)
    {
        NormalizePlane(p_planes[0]);
        NormalizePlane(p_planes[1]);
        NormalizePlane(p_planes[2]);
        NormalizePlane(p_planes[3]);
        NormalizePlane(p_planes[4]);
        NormalizePlane(p_planes[5]);
    }
}


