
Geometric Primitives &
Proximity Detection

Marq Singer
(marq@essentialmath.com)

Collisions

» Up to this point, objects just pass through
each other

» Two parts to handling collisions
Collision detection – uses computational
geometry techniques (useful in other ways,
too)
Collision response – modifying physical
simulation

Computational Geometry

» Algorithms for solving geometric problems
» Object intersections
» Object proximity
» Path planning

Distance Testing

» Useful for computing intersection between
simple objects

» E.g. sphere intersection boils down to
point-point distance test

» Just cover a few examples

Point-Point Distance

» Compute length of vector between two
points P0 and P1, or

2
10

2
10

2
1010)()()(),dist(zzyyxxPP −+−+−=

Line-Point Distance

» Line defined by point P and vector v
» Break vector w = Q – P into w⊥ and w||

» w|| = (w • v) v
» ||w⊥||2 = ||w||2 – ||w||||2

^

^ ^

v

Q

P

w

w||

w⊥

^

Line-Point Distance

» Final formula:

» If v isn't normalized:

)ˆ(),ˆ,dist(vwwv −•=QP

⎟
⎠
⎞

⎜
⎝
⎛

•
−•=

vv
vwwv),,dist(QP

Line-Line Distance

» From http://www.geometryalgorithms.com

» Vector wc perpendicular to u and v or

» Two equations
» Two unknowns

P0

u

Q0

v

P(sc)

Q(tc)

wc0
0

)()(

=•
=•

−=

c

c

ccc tQsP

wv
wu

w

Line-Line Distance

Final equations:

)(
)(

)()()(

)()()(

00

00

2
0

2
0

QPv
QPu

vv
vu
uu

vQ

uP

−•=
−•=

•=
•=
•=

⋅−−+=

⋅−−+=

e
d
c
b
a

bacbdaetQ

baccdbesP

c

c

P0

u

Q0

v

P(sc)

Q(tc)

Segment-Segment Distance

» Determine closest point between lines
» If lies on both segments, done
» Otherwise clamp against nearest endpoint

and recompute
» See references for details

Bounding Objects

» Detecting intersections with complex
objects expensive

» Provide simple object that surrounds them
to cheaply cull out obvious cases

» Use for collision, rendering, picking
» Cover in increasing order of complexity

Bounding Sphere

» Tightest sphere that surrounds model
» For each point, compute distance from

center, save max for radius

Bounding Sphere (Cont’d)

» What to use for center?
Local origin of model
Centroid (average of all points)
Center of bounding box

» Want a good fit to cull as much as possible
» Linear programming gives smallest fit

Sphere-Sphere Collision

» Compute distance d between centers
» If d < r1 + r2, colliding
» Note: d2 is not necessarily < r1

2 + r2
2

want d2 < (r1 + r2)2

d
r1

r2

Bounding Box

» Tightest box that surrounds model
» Compare points to min/max vertices
» If element less/greater, set element in

min/max

(min x, min y)

(max x, max y)

Axis-Aligned Bounding Box

» Box edges aligned to world axes
» Recalc when object changes orientation
» Collision checks are cheaper though

Axis-Aligned Box-Box Collision

» Compare x values in min,max vertices
» If min2 > max1 or min1 > max2, no

collision (separating plane)

» Otherwise check y and z directions
min1 max1 min2 max2

Object-Oriented Bounding Box

» Box edges aligned with local object
coordinate system

» Much tighter, but collision calcs costly

OBB Collision

» Idea: determine if separating plane
between boxes exists

» Project box extent onto plane vector, test
against projection btwn centers

c•v
b•va•v

a b

c

OBB Collision

» To ensure maximum extents, take dot
product using only absolute values

» Check against axes for both boxes, plus
cross products of all axes

» See Gottschalk for more details

|||||| zzyyxx vavava ++

Capsule

» Cylinder with hemispheres on ends
» One way to compute

Calc bounding box
Use long axis for length
Next largest width for radius

r
r

Capsule

» Compact
Only store radius, endpoints of line segment

» Oriented shape w/faster test than OBB
» Test path collision

Capsule-Capsule Collision

» Key: swept sphere axis is line segment
with surrounding radius

» Compute distance between line segments
» If less than r1 + r2, collide

Caveat

» Math assumes infinite precision
» Floating point is not to be trusted
» Precision worse farther from 0
» Use epsilons
» Careful of operation order
» Re-use computed results
» More on floating point on website

Which To Use?

» As many as necessary
» Start with cheap tests, move up the list

Sphere
Swept Sphere
Box

» May not need them all

Recap

» Sphere -- cheap, not a good fit
» AABB -- still cheap, but must recalc and

not a tight fit
» Swept Sphere -- oriented, cheaper than

OBB but generally not as good a fit
» OBB -- somewhat costly, but a better fit

Collision Detection

» Naïve: n2 checks!
» Two part process

Broad phase
Cull out non-colliding pairs

Narrow phase
Determine penetration and contact points between
pairs

Broad Phase

» Obvious steps
Only check each pair once

Flag object if collisions already checked

Only check moving objects
Check against other moving and static

Check rough bounding object first
AABB or sphere

Hierarchical Systems

» Can break model into hierarchy and build
bounds for each level of hierarchy

» Finer level of detection
» Test top level, cull out lots of lower levels

Hierarchical Systems

» Can use scene graph to maintain bounding
information

» Propagate transforms down to children
» Propagate bound changes up to root

Spatial Subdivision

» Break world into separate areas
» Only check your area and neighbors
» Simplest: uniform

Slabs
Grid
Voxels

Sweep and Prune

» Store sorted x extents of objects
» Sweep from min x to max x
» As object min value comes up, make

active, test against active objects
» Can extend to more dimensions

Spatial Subdivision

» Other methods:
Quadtrees, octrees
BSP trees, kd-trees
Room-portal

» Choice depends on your game type,
rendering engine, memory available, etc.

Temporal Coherence

» Objects nearby generally stay nearby
» Check those first
» Can take memory to store information

Narrow Phase

» Have culled object pairs
» Need to find

Contact point
Normal
Penetration (if any)

Contact Region

» Two objects interpenetrate, have one (or
more) regions

» A bit messy to deal with
» Many try to avoid interpenetration

Contact Features

» Faceted objects collide at pair of contact
features

» Only consider E-E and F-V pairs
» Infinite possibilities for normals for others
» Can generally convert to E-E and F-V
» Ex: V-V, pick neighboring face for one

Contact Features

» For E-E:
Point is intersection of edges
Normal is cross product of edge vectors

» For F-V:
Point is vertex location
Normal is face normal

Contact Points

» Can have multiple contact points
Ex: two concave objects

» Store as part of collision detection
» Collate as part of collision resolution

Example: Spheres

» Difference between centers gives normal n
(after you normalize)

» Penetration distance p is
p = (r1+r2) - ||c2-c1||

c1 c2

Example: Spheres

» Collision point: average of penetration
distance along extended normal

» If touching, where normal crosses sphere

v = ½(c1 + r1n + c2 - r2n)^ ^

c1
c2

Lin-Canny

» For convex objects
» Easy to understand, hard to implement
» Closest features generally same from

frame to frame
» Track between frames
» Modify by walking along object

Lin-Canny

» Frame 0

» Frame 1

GJK

» For Convex Objects
» Hard to understand, easy to implement
» Finds point in Configuration Space

Obstacle closest to origin. Corresponds to
contact point

» Iteratively finds points by successive
refinement of simplices

GJK

» CSO

» Simplex Refinement

A

B

A-B

Missing Collision

» If time step is too large for object speed,
two objects may pass right through each
other without being detected (tunneling)

Missing Collision

» One solution: slice time interval
» Simulate between slices

» Same problem, just reduced frequency

Missing Collision

» Another solution: use swept volumes

» If volumes collide, may collide in frame
» With more work can determine time-of-

impact (TOI), if any

Recap

» Collision detection complex
» Combo of math and computing
» Break into two phases: broad and narrow
» Be careful of tunneling

References

» Preparata, Franco P. and Michael Ian Shamos,
Computational Geometry: An Introduction,
Springer-Verlag, New York, 1985.

» O’Rourke, Joseph, Computational Geometry in C,
Cambridge University Press, New York, 1994.

» Eberly, David H., 3D Game Engine Design, Morgan
Kaufmann, San Francisco, 2001.

» Gottschalk, Stephan, Ming Lin and Dinesh
Manocha, “OBB-Tree: A Hierarchical Structure for
Rapid Interference Detection,” SIGGRAPH ‘96.

References

» Van den Bergen, Gino, Collision Detection in
Interactive 3D Environments, Morgan Kaufmann,
San Francisco, 2003.

» Eberly, David H., Game Physics, Morgan
Kaufmann, San Francisco, 2003.

» Ericson, Christer, Real-Time Collision Detection,
Morgan Kaufmann, San Francisco, 2004.

» Van Verth, James M. and Lars M. Bishop,
Essential Mathematics For Games & Interactive
Applications, Morgan Kaufmann, San Francisco,
2004.

	Geometric Primitives & Proximity Detection
	Collisions
	Computational Geometry
	Distance Testing
	Point-Point Distance
	Line-Point Distance
	Line-Point Distance
	Line-Line Distance
	Line-Line Distance
	Segment-Segment Distance
	Bounding Objects
	Bounding Sphere
	Bounding Sphere (Cont’d)
	Sphere-Sphere Collision
	Bounding Box
	Axis-Aligned Bounding Box
	Axis-Aligned Box-Box Collision
	Object-Oriented Bounding Box
	OBB Collision
	OBB Collision
	Capsule
	Capsule
	Capsule-Capsule Collision
	Caveat
	Which To Use?
	Recap
	Collision Detection
	Broad Phase
	Hierarchical Systems
	Hierarchical Systems
	Spatial Subdivision
	Sweep and Prune
	Spatial Subdivision
	Temporal Coherence
	Narrow Phase
	Contact Region
	Contact Features
	Contact Features
	Contact Points
	Example: Spheres
	Example: Spheres
	Lin-Canny
	Lin-Canny
	GJK
	GJK
	Missing Collision
	Missing Collision
	Missing Collision
	Recap
	References
	References

