
Practical Examples in
Data Oriented Design

Niklas Frykholm, BitSquid

What is Data-Oriented Design?

Focus on data!

How is data represented, moved, shared and transformed?

Not: What can objects do? How do they interact?

Why - Performance

● you cannot be fast without knowing how data is touched
● virtual calls
● scattered individual objects

Why - Multithreading

● You cannot multithread without knowing how data is
touched

Why - Offload to co-processor

● You cannot offload without knowing what data to send

Why - Better design... sometimes

Data focus can lead to isolated, self-
contained, interchangeable pieces of code and data

Object focus can lead to FRAMEWORK HELL!

WindowBorderDecoratorAccessorIterator

Begun, the code war has...

Principles of Data-Oriented Design

● Isolate the tasks
○ Do many-at-once

● Find the data objects
● Design data based on access patterns

Never underestimate the power of
a linear array!

Practical examples

● Scene Graph
● Animation Player

Scene graph
Scary scary OOD:

Isolate tasks

Handled by their respective
subsystems

Scene Graph:

Local-to-world transform
for linked objects

Find data objects

Input:
● Local poses for n nodes
● Description of link hierarchy

Output:
● World poses for n nodes

Transform:
W = L (root object)
W = Wparent x L

Data design

for i = 1,n
 if P[i] = -1
 W[i] = L[i]
 else
 W[i] = W[P[i]] * L[i]

Results:

● No unnecessary cache misses
● Isolated, easy to performance measure
● Trivial to parallelize and/or offload

Next example: Animation player

The OOD, the bad and the ugly:

t1C1 t2C2 t3C3 ... tnCn

Isolate tasks

Given an animation:

Find the pose for every bone at time t

Identify data objects

pose1

pose2

...

posen

Access patterns

● Animation data is accessed in time order
○ Sort data by time

● To interpolate we need several curve points
○ Keep the active curve points in a separate structure

● Two separate operations
○ Update active curve points when time is advanced
○ Interpolate pose from active curve points

1 t0C0 t1C1

2 t0C0 t1C1

...

n t0C0 t1C1

Active curve points:

Data design

1 t0C0 t1C1

2 t0C0 t1C1

...

n t0C0 t1C1

Active curve points:

bone_index t C

bone_index t C

...

Animation data:

max(t0) < t < min(t1)

Head 0, A 10, B

Arm 0, C 2, D 5, E 10, F

Leg 0, G 3, H 7, I 9, J 10, K

Head 0 A 0

Head 10 B 0

Arm 0 C 0
Arm 2 D 0
Leg 0 G 0
Leg 3 H 0
Arm 5 E 2
Leg 7 I 3
Arm 10 F 5
Leg 9 J 7
Leg 10 K 9

Head 0, A 10, B

Arm 2, D 5, E

Leg 3, H 7, I

Original animation curve points

Sorted by time
needed

Active curve points at

t = 4

Results:

● Huge improvement in data-access patterns
● Only the minimal required amount of animation data needs

to be touched
● Stream compression of animations possible
● Resulting pose can be reused for different purposes
● Trivial to parallelize or offload computation

Conclusions

Benefits:

● Faster code
○ Cache-friendly
○ Multi-threading
○ Co-processing

● More modular
● Additional benefits

○ Networking
○ Serialization

Methods:

● Isolate tasks
○ Do many at once

● Find data transforms
● Optimize access patterns

● When in doubt, use a
linear array!

Questions?

niklas.frykholm@bitsquid.se
www.bitsquid.se

Twitter: niklasfrykholm

www.stonegiant.se

